DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

Our Science
Home › Science Highlights
Page 5 of 28« First«...34567...1020...»Last »

October 19, 2018

Mining Metagenomes for Cas Proteins

Click on the image above or click here (https://youtu.be/iSEEw4Vs_B4) to watch a CRISPR Whiteboard Lesson from the Innovative Genomics Institute, this one focuses on the PAM sequence.Cas14 proteins discovered from JGI’s IMG/M database and biochemically characterized at UC Berkeley and the Innovative Genomics Institute.  The Science Researchers report the discovery of miniature Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated proteins that can target single-stranded DNA (ssDNA). The discovery was made possible by mining the datasets in the Integrated Microbial Genomes… [Read More]

October 8, 2018

Mapping Heat Resistance in Yeasts

At high temperature, S. paradoxus cells die in the act of cell division, as seen by the dyads with cell bodies shriveled away from the outer cell wall. (Images by Carly Weiss, courtesy of the Brem Lab)A new approach for improving functional annotation in fungal genomes. The Science In a proof-of-concept study, researchers demonstrated that a new genetic mapping strategy called RH-Seq can identify genes that promote heat resistance in the brewer’s/baker’s yeast Saccharomyces cerevisiae, allowing this species to grow better than its closest relative S. paradoxus at high temperatures (39°C/102°F)…. [Read More]

September 24, 2018

First Monoploid Reference Sequence of Sugarcane

The reference sequence is useful for mapping the genes involved in sugar production and for identifying different variants on different chromosomes, information that can be used to assemble a more complex and more realistic polyploid sugarcane genome now underway. (Rufino Uribe, CC-SA 2.0)Sorghum genome serves as a reference for the highly complex sugarcane genome. The Science Most species are diploids and have two sets of chromosomes, one from each parent. In contrast, many crops have multiple sets of chromosomes (they are “polyploid”) and their complex genomes are more difficult to sequence and assemble, in turn limiting the… [Read More]

September 5, 2018

Defining a Pan-Genome for Antarctic Archaea

Antarctica’s Deep Lake. (Rick Cavicchioli)Analysis of haloarchaeal metagenomes broadens understanding of Antarctic biogeography. The Science Haloarchaea flourish in hypersaline environments, and researchers are interested in learning how these microbes have learned to adapt from marine to hypersaline conditions by studying the microbial communities in Antarctic lakes, some of which have salinities 10 times that of seawater. To shed light… [Read More]

August 13, 2018

Corymbia Genome Expands Terpene Synthesis Knowledge

Corymbia citriodora subspecies citriodora is a native of north Queensland in Australia but is grown throughout the subtropics for essential oil production. (Photo by Mervyn Shepherd)Genome annotations of two C. citriodora subspecies broaden understanding of the terpene synthase gene family across eucalypt lineages. The Science From the distinct smell of eucalyptus to the flavor of wine, terpenes are ubiquitous. A diverse group of plant-produced organic compounds, terpenes play key roles in plant growth, defense, and environmental interactions. Terpenes are also… [Read More]

July 6, 2018

Innovative Technology Improves Our Understanding of Bacterial Cell Signaling

The molecule cyclic di-GMP plays a key role in controlling cellulose production and biofilm formation. To better understand cyclic di-GMP signaling pathways, the team developed the first chemiluminescent biosensor system for cyclic di-GMP and showed that it could be used to assay cyclic di-GMP in bacterial lysates. (Image courtesy of Hammond Lab, UC Berkeley)Newly developed chemiluminescent biosensors shed light on how bacteria function and colonize diverse environments. The Science Cyclic di-GMP (Guanine Monophosphate) is found in nearly all types of bacteria and interacts with cell signaling networks that control many basic cellular functions. It plays an important role in regulating microbial cellulose production and biofilm formation, which affects… [Read More]

June 13, 2018

Building Sphagnum Genomic Resources

Sphagnum fallax (Image courtesy of Jonathan Shaw, Duke University)Sphagnome data would enable researchers’ insights on their potential carbon cycling impact. The Science Enabled by the JGI’s Community Science Program (CSP), researchers are developing a number of resources to build up Sphagnum as a plant model system focused on carbon cycling studies, rather than for food or fuel applications. The Impact Sphagnum’s impact on… [Read More]

May 30, 2018

DAS Tool for Genome Reconstruction from Metagenomes

The Angelo Coast Range Reserve, from which soil samples were taken, protects thousands of acres of the upper watershed of South Fork of the Eel River (shown here) in Mendocino County. (Akos Kokai via Flickr, CC BY 2.0 https://www.flickr.com/photos/on_earth/17307333828/)Developing and validating an integrated approach to genome recovery from metagenomes. The Science Through the JGI’s Emerging Technologies Opportunity Program (ETOP), researchers have developed and improved upon a tool that combines existing DNA sequence binning algorithms, allowing them to reconstruct more near-complete genomes from soil metagenomes compared to other methods. The Impact Understanding how individual… [Read More]

May 23, 2018

Iron-rich Microbial Mats’ Main Players: Marsarchaeota

The iron (Fe)-oxide terraces at Echinus Geyser form from the oxidation of ferrous Fe, and the temperature across the terraces ranges from ~ 60-70ºC, while pH values vary from 3.4 to 3.6. A very thin (1-2 mm) layer of water flowing over the Fe-oxide terraces from the outflow channel at Echinus Geyser, located in Yellowstone National Park’s Norris Geyser Basin, is thought to provide the needed oxygen to create habitats suitable for the Marsarchaeota. (Bill Inskeep)Novel archaeal lineage found in Yellowstone may have been important in early Earth conditions. The Science Through a combination of sequencing tools and techniques applied to samples collected from acidic iron-oxide microbial mats in Yellowstone National Park over time, researchers have discovered and characterized a novel phylum-level lineage of archaea with at least two major… [Read More]

January 8, 2018

The fungus that made itself at home

Serpula lacrymans var shastensis decomposing a large Shasta red fir (Abies magnifica var shastenis) in its natural habitat in Mt Shasta, California. (Håvard Kauserud)Retracing how the dry rot Serpula lacrymans adapted to a new ecological habitat. The Science By comparing genetic information from similar organisms, researchers have gained insights on why the dry rot (Serpula lacrymans) is so destructive in houses. A study involving six brown rot fungi reveals the genomic changes Serpula lacrymans has undergone in adapting… [Read More]
Page 5 of 28« First«...34567...1020...»Last »

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California