DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

Our Science
Home › Science Highlights › Fungus Fuels Tree Growth

August 20, 2019

Fungus Fuels Tree Growth

Researchers start pinning down how a fungal symbiont spurs growth of poplar, a potential biofuel feedstock.  

Poplar cuttings inoculated with M. elongata strain PM193

Poplar cuttings inoculated with M. elongata strain PM193 (far right) grow larger in 30 percent forest soil / 70 percent sand than without PM193 (middle). On the left are controls grown in sterile sand. (Chih-Ming Hsu)

The Science

The fungus Mortierella elongata enjoys a dual lifestyle; it can thrive in the soil as a saprophyte, living off decaying organic matter, or as an endophyte, living between a plant’s root cells. The fungus is almost always found among and within poplar trees, and in an effort to understand its influence on the plant, a team of scientists studied what happens to the tree’s physical traits and gene expression when the fungus is present.

The Impact

Black cottonwood, or poplar, (Populus trichocarpa) is the fastest growing hardwood tree in the western United States, making it an energy feedstock of particular interest to the U.S. Department of Energy (DOE). By better understanding how poplar responds to its intimate associations with endophytes — a group whose effects on plants are still not well understood — scientists can better fine-tune their engineering efforts of both plants and root microbiomes to grow energy crops more efficiently.

Summary

To interrogate the close partnership of endophyte M. elongata and poplar, a team led by Hui-Ling (Sunny) Liao of the University of Florida collected forest samples of poplar and soil from Washington and Oregon. The cuttings included genotypes from the DOE BioEnergy Science Center (BESC), predecessor of DOE’s Center for Bioenergy Innovation (CBI) at Oak Ridge National Laboratory. To see how the fungus affected poplar growth, the team compared poplar cuttings grown with and without an inoculation of the M. elongata strain PM193 added to a diluted soil mixture, publishing the results in Molecular Plant-Microbe Interactions.

The results were striking. Adding PM193 caused poplar cuttings to grow about 30 percent larger by dry weight than without PM193 . By contrast, using a different endophytic fungus, Ilyonectria europaea, had no effect on growth. Liao’s team partnered with the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility, through its Community Science Program in order to get M. elongata and I. europaea genomes sequenced and annotated for this study.

Mortierella elongate (PMI93) mycelium, or non-reproductive tissue, forms a biofilm around a corn root. (Khalid Hameed)

Mortierella elongata (PM193) mycelium, or non-reproductive tissue, forms a biofilm around a corn root. (Khalid Hameed)

The team found that, unlike pathogenic or mycorrhizal fungi (mutualist symbionts that induce structural changes in plant roots), M. elongata doesn’t have as many gene products that directly influence plant phenotype, such as secreted proteins. However, M. elongata seems to encourage the plant to have leakier cell walls and weaker defenses in general; the fungus decreased the expression of poplar genes associated with plant defense (e.g. jasmonic acid and salicylic acid). The team also observed that the plants instead put more energy into growth, noting they increased expression of genes involved in signaling of gibberellin, one of the best-known plant growth hormones.

One other tidbit that caught the researchers’ attention is that the poplar cuttings had increased expression of lipid signaling genes when they were inoculated with M. elongata. Poplar might be detecting lipids from M. elongata; the fungus produces them so prolifically, it oozes. The team hypothesizes that lipids could act as a bridge of interkingdom communication between the plant and fungus.

Discovering how microbes can influence plant physiology helps scientists better understand how to optimize characteristics like growth rate. Harnessing that power could help usher widespread use of biofuel as a replacement to fossil fuel.

Contacts:

BER Contact
Ramana Madupu, Ph.D.
Program Manager
Biological Systems Sciences Division
Office of Biological and Environmental Research
Office of Science
US Department of Energy
Ramana.Madupu@science.doe.gov

PI Contact
Hui-Ling Liao, Ph.D.
University of Florida
sunny.liao@ufl.edu

Funding:

This work was supported by the Plant-Microbe Interfaces program at the Oak Ridge National Laboratory (ORNL) sponsored by the Office of Biological and Environmental Research at the United States Department of Energy (DOE) Office of Science. ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the DOE. The work conducted by the DOE Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the United States Department of Energy under contract DE-AC02-05CH11231. Support was also provided by the NSF Zygolife (NSF-DEB1441715), the United States National Science Foundation (NSF) (DEB 1737898 to G. Bonito), the Laboratory of Excellence Advanced Research on the Biology of Tree and Forest Ecosystems (ARBRE) (ANR-11-LABX 0002 01 to F. Martin), JGI Community sequencing program project (CSP570, DE-AC02-05CH11231), and National Science Foundation (concept ID 10.13039/100000001; grant number DEB 1737898).

Publication:

  • Liao H et al. Fungal Endophytes of Populus trichocarpaAlter Host Phenotype, Gene Expression, and Rhizobiome Composition.   Molecular Plant-Microbe Interactions. 2019 July. doi: 1094/MPMI-05-18-0133-R

Related Links:

  • JGI Community Science Program
  • JGI News Release on Poplar Sequencing Effort: The Book Opens on the First Tree Genome
  • JGI News Release on Poplar Genome: The First Tree Genome is Published
  • JGI News Release: The Poplar Genome at 10
  • Populus trichocarpa genome on JGI Plant Portal Phytozome
  • Mycocosm, the JGI fungus genome portal, where Mortierella elongata and Ilyonectria europaea genomes can be found: here and here, respectively

By: Alison F. Takemura

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Poplar, Science Highlights Tagged With: Poplar

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Genome Insider S2 Episode 7: THE Bioenergy Tree

Logo of Genome Insider, podcast of the Joint Genome Institute

The Poplar Genome at 10

Then and now: our poplar tree has grown from less than four feet to more than forty feet in 10 years.

Identifying causes of poplar canker

Cankers caused by the fungal tree pathogen M. populorum on poplar stems. (T.H. Filer Jr., USDA, Bugwood.org CC BY-NC-3.0)

Signatures of Selection Inscribed on Poplar Genomes

Boardman OR poplar plantation

Why Sequence Poplar Leaf Rust?

Large toolset for detecting genetic variation in poplars

  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California