DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

    Artist rendering of genome standards being applied to deciphering the extensive diversity of viruses. (Illustration by Leah Pantea)
    Expanding Metagenomics to Capture Viral Diversity
    Along with highlighting the viruses in a given sample, metagenomics shed light on another key aspect of viruses in the environment — their sheer genetic diversity.

    More

    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    CSP New Investigators FY23 R1
    JGI Announces First Round of 2023 New Investigator Awardees
    Twice each year we look for novel research projects aligned with DOE missions and from PIs who have not led any previously-accepted proposals through the CSP New Investigator call.

    More

    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

Our Science
Home › Science Highlights › The Surprising Structure of a Shrub Willow Sex Chromosome

April 17, 2020

The Surprising Structure of a Shrub Willow Sex Chromosome

A genetic architecture that is characteristic of the sex chromosomes of mammals is, for the first time, seen in a plant.

Female S. purpurea flowers. (Larry Smart, Cornell University, co-author of the study)
Female S. purpurea flowers. (Larry Smart, Cornell University)

The Science  

Sex in plants can be befuddling. Most species are hermaphrodites, expressing both male and female gametes in one individual. But some, including shrub willow Salix purpurea, employ the evolutionary strategy we are far more familiar with: differentiating into male and female sexes. For the first time, the sex chromosomes of shrub willow have been sequenced with sufficient resolution to analyze their structure. Scientists found both a gene likely important for sex determination and a shared genetic architecture with Y chromosomes in mammals: a structure that helps correct deleterious mutations.

The Impact

Shrub willow and its close relative Populus trichocarpa, or the poplar tree, are potential biofuel feedstocks of interest to the U.S. Department of Energy (DOE). (Poplar is a Flagship Plant.) To engineer them, researchers need to select and breed cultivars for the next generation. Understanding the mechanisms by which they reproduce can help guide breeding efforts. For example, discovering genetic markers of sex enables scientists to develop molecular assays that can distinguish males and females even when plants with multi-year generation times are young and haven’t physically differentiated. Understanding mechanisms of sex determination could also lead to new approaches to accelerate flowering, which can speed the pace of breeding. Once plant cultivars are optimized, the knowledge could also help prevent flowering, which would enhance the biosafety of genetically engineered trees.

Male S. purpurea flowers. (Larry Smart, Cornell University, co-author of the study)
Male S. purpurea flowers. (Larry Smart, Cornell University)

Summary

The shrub willow differentiates into males and females, a development conferred by its sex chromosomes. In humans, males are “heterogametic”: they have different sex chromosomes, i.e., XY instead of XX. But, like some plant and songbird species, the system in shrub willow is flipped: females are heterogametic. To avoid confusion with the mammalian system, the sex chromosomes are called Z and W instead of X and Y, and ZW rather than ZZ encodes for females.

To better understand how sex determination works in shrub willow, researchers investigated the structures of the sex chromosomes of one male and one female specimen. Stephen DiFazio, plant biologist at West Virginia University (WVU), led the study’s international team, which included scientists from Oak Ridge National Laboratory and the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility located at Lawrence Berkeley National Laboratory. The JGI sequenced the shrub willows through the Community Science Program, using long-read sequencing to assemble the repetitive areas of the complete sex chromosomes. The results were published in Genome Biology.

The team found that the shrub willow’s W chromosome has palindromic structures, the first time seen in a plant sex chromosome. Palindromes are large inverted repeats with highly similar sequences so that their sequences read the same (or nearly) backward and forward, like the name “Hannah.” Palindromes are thought to be important structures in the human Y chromosome because, like W chromosomes, they lack a partner with which to homologously recombine. Palindromes provide an alternative; because of their internal sequence similarity, they enable gene copies to fold back on each other and thus be used as templates to correct mutations. This process, called gene conversion, helps maintain the integrity of the sequences. The variety of palindromes observed in nature — for example, in humans Y chromosomes and some songbird W chromosomes — suggest that they are advantageous enough to have evolved multiple times independently.

 An illustration of shrub willow (Salix purpurea) from Flora von Deutschland, Österreich und der Schweiz by Otto Wilhelm Thomé. (Wikimedia commons user Kurt Stueber)
An illustration of shrub willow (Salix purpurea) from Flora von Deutschland, Österreich und der Schweiz by Otto Wilhelm Thomé. (Wikimedia Commons, user Kurt Stueber)

The researchers also found a gene likely responsible for sex determination. Many genes differentiate the shrub willow’s sex chromosomes, so the researchers investigated poplar for which genes might be shared in common between poplar’s Y — poplar has an XY system — and shrub willow’s W chromosomes. One shared gene stood out in particular: a cytokinin response regulator that was expanded in a palindrome and shown to be undergoing gene conversion in willow. This gene regulates the expression of other genes in response to cytokinin, a key plant hormone, making it a plausible mechanism for sex determination in these two species and, perhaps, more generally.

Contacts:

BER Contact
Ramana Madupu, Ph.D.
Program Manager
Biological Systems Sciences Division
Office of Biological and Environmental Research
Office of Science
US Department of Energy
Ramana.Madupu@science.doe.gov

PI Contact
Stephen P. DiFazio, Ph.D.
West Virginia University
spdifazio@mail.wvu.edu

Funding:

This work was supported by the NSF Dimensions of Biodiversity Program (DEB-1542509 to S.D., DEB-1542486 to LBS, and DEB-1542599 to M.O.). Support was also provided by the National Natural Science Foundation of China (31590821, 31561123001, 31500502, 41871044), National Key Research and Development Program of China (2017YFC0505203, 2016YFD0600101), and the National Key Project for Basic Research (2012CB114504). The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.  

Publication:

  • Zhou R, et al., “A willow sex chromosome reveals convergent evolution of complex palindromic repeats.” Genome Biology 21, 38 (2020). [DOI: 10.1186/s13059-020-1952-4]

Related Links:

  • Steve DiFazio on “Sex in the Salicaceae” at the 2019 JGI Genomics of Energy & Environment Meeting: http://bit.ly/JGI2019DiFazio
  • JGI Community Science Program
  • Salix purpurea genome on JGI Plant Portal Phytozome

By: Alison F. Takemura

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Science Highlights

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

New Research Sheds Light on Diversity in the Deep Sea

A photo taken in the deep sea. Black clouds billow out of hydrothermal vents.

Sequencing Sphagnum Leads to Discovery of Sex Chromosomes

A photo of two sphagnum species: S. divinum (red) and S. angustifolium (green)]

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.

Soil virus offers insight into maintaining microorganisms

Silver age of GOLD introduces new features

Abstract image of gold lights and squares against a black backdrop
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California