DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

Our Science
Home › Science Highlights › How Filamentous Fungi Sense Food

April 8, 2020

How Filamentous Fungi Sense Food

Tracing gene regulatory networks in the model fungus Neurospora crassa.

The Science

The filamentous fungus Neurospora crassa eating plant biomass. (Vincent Wu)

A team led by researchers at the University of California, Berkeley used a multi-omics approach to reconstruct and model gene regulatory pathways used by the filamentous fungus Neurospora crassa, and to identify and decide on the order in which this fungus breaks down plant cell wall materials including lignin, cellulose and hemicellulose.

The Impact

N. crassa is the model organism for filamentous fungi, all of which contain a wide array of plant cell-wall degrading enzymes (PCWDEs) that allow them to efficiently break down the wide array of simple and complex components present in plant biomass. This is of interest for bioenergy researchers looking to improve the industrial production of sustainable biofuels and bioproducts. Filamentous fungi are also being used in the biotechnology industry to produce enzymes, proteins, and other chemicals.

Summary

Filamentous fungi are like handymen who show up at a job site for a task that requires a flathead screwdriver with a full toolbox including Phillips and specialty screwdrivers, not to mention Allen wrenches. The fungi are similarly armed with a variety of PCWDEs to first break down the components of plant cell walls, which range from simple to complex carbohydrates, and then convert them into simple sugars. More importantly, when faced with a veritable buffet of carbon sources, these fungi detect which complex chains are available; this information triggers pathways to determine which enzymes should be deployed in what order to most efficiently degrade the plant biomass.

This figure shows overlapping regulation by the transcription factors responsible for turning on enzymes for digesting the plant cell wall. The lines connect transcription factors to degradative enzymes that the factors transcriptionally control. Many enzymes can be controlled by multiple transcription factors, and might explain the capability of filamentous fungi to fine tune expression of given enzymes given a particular resource. (From Wu et al, PNAS)
This figure shows overlapping regulation by the transcription factors responsible for turning on enzymes for digesting the plant cell wall. The lines connect transcription factors to degradative enzymes that the factors transcriptionally control. Many enzymes can be controlled by multiple transcription factors, and might explain the capability of filamentous fungi to fine tune expression of given enzymes given a particular resource. (From Wu et al, PNAS 2020)

In order to learn more about these regulatory networks in the model fungus N. crassa, a team led by N. Louise Glass at the University of California, Berkeley and her postdoctoral fellow Vincent Wu worked with researchers at the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility located at Lawrence Berkeley National Laboratory (Berkeley Lab). The work was enabled in part through JGI’s Community Science Program through a proposal akin to the Encyclopedia of DNA Elements (ENCODE) project, which is aimed at determining the activity, expression and regulation of protein-coding genes.

This first paper integrating multi-omics data from this JGI fungal ENCODE proposal was recently published in the Proceedings of the National Academy of Sciences. Researchers applied multiple omics techniques to reconstruct and model the gene regulatory networks as they responded to available carbon sources, which ranged from simple sugars to plant biomass. One of these techniques was DAP-seq, a high-throughput method for identifying protein binding sites in DNA by DNA Affinity Purification, developed and optimized by Ronan O’Malley, who leads the JGI’s Sequencing Technologies group. DAP-seq allowed the team to identify the direct binding sites of many transcription factors to better understand how nutrients are acquired and carbon is metabolized in filamentous fungi. The work also suggests a new approach to gene annotation, which then can be explored in depth for multiple models and their close relatives across the fungal tree of life,
enriching the work being done as part of the 1000 Fungal Genomes
Project
.

Funding for the project was also provided by the Energy Biosciences Institute and the Laboratory Directed Research and Development Program of Berkeley Lab, among other organizations.

Contacts:

BER Contact
Ramana Madupu, Ph.D.
Program Manager, DOE Joint Genome Institute
Biological Systems Sciences Division
Office of Biological and Environmental Research
Office of Science
US Department of Energy
Ramana.Madupu@science.doe.gov

PI Contact
N. Louise Glass
University of California, Berkeley
lglass@berkeley.edu

Funding:

We acknowledge the use of deletion strains generated by Grant P01 GM-068087 “Functional Analysis of a Model Filamentous Fungus” and that are publicly available at the Fungal Genetics Stock Center. This work was supported by an Energy Biosciences Institute Grant, a Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under US Department of Energy Contract DE-AC02-05CH11231, a Joint Genome Institute Community Science Program grant (CSP 982), and funds from the Fred E. Dickinson Chair of Wood Science and Technology to N.L.G.. V.W.W. was partially supported by National Institutes of Health National Research Service Award Trainee Grant 5T32GM007127-39. The work conducted by the US Department of Energy (DOE) Joint Genome Institute, a DOE Office of Science User Facility, was supported by the Office of Science of the US DOE under Contract no. DE-AC02-05CH11231.

Publication:

  • Wu VW et al. The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus. Proc Natl Acad Sci U S A. 2020 Feb 28. pii: 201915611. doi: 10.1073/pnas.1915611117.

Relevant Links:

  • JGI Community Science Program
  • JGI CSP 2013 Proposal: The Fungal Nutritional
    Encyclopedia of DNA Elements (ENCODE) Project
  • JGI 1000 Fungal Genomes Project
  • Neurospora crassa on the JGI Fungal Portal MycoCosm

By: Massie S. Ballon

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Science Highlights

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Soil virus offers insight into maintaining microorganisms

Silver age of GOLD introduces new features

Abstract image of gold lights and squares against a black backdrop

Virus Discoveries that Keep Getting Bigger

And illustration of a giant virus in purple and blue tones.

Model fern reveals insight into DNA thievery in ferns

A green fern against a black backdrop

Understanding Wildfire Recovery, Starting in Soil

A photograph of the forest floor, covered in pine needles, with burned trees in the background.

Extracting the Secrets of Secondary Metabolites

A graphic flowchart showing how CRAGE and CRISPR work together
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California