DOE Joint Genome Institute

  • COVID-19
  • About
  • Phones
  • Contacts
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Products
    • Science Highlights
    • Scientists
    Maize can produce a cocktail of antibiotics with a handful of enzymes. (Sam Fentress, CC BY-SA 2.0)
    How Maize Makes An Antibiotic Cocktail
    Zealexins are produced in every corn variety and protect maize by fending off fungal and microbial infections using surprisingly few enzymes.

    More

    The genome of the common fiber vase or Thelephora terrestris was among those used in the study. (Francis Martin)
    From Competition to Cooperation
    By comparing 135 fungal sequenced genomes, researchers were able to carry out a broader analysis than had ever been done before to look at how saprotrophs have transitioned to the symbiotic lifestyle.

    More

    Miscanthus grasses. (Roy Kaltschmidt/Berkeley Lab)
    A Grass Model to Help Improve Giant Miscanthus
    The reference genome for M. sinensis, and the associated genomic tools, allows Miscanthus to both inform and benefit from breeding programs of related candidate bioenergy feedstock crops such as sugarcane and sorghum.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Poplar (Populus trichocarpa and P. deltoides) grow in the Advanced Plant Phenotyping Laboratory (APPL) at Oak Ridge National Laboratory in Tennessee. Poplar is an important biofuel feedstock, and Populus trichocarpa is the first tree species to have its genome sequenced — a feat accomplished by JGI. (Image courtesy of Oak Ridge National Laboratory, U.S. Dept. of Energy)
    Podcast: Xiaohan Yang on A Plantiful Future
    Building off plant genomics collaborations between the JGI and Oak Ridge National Laboratory, Xiaohan Yang envisions customizing plants for the benefit of human society.

    More:

    Expansin complex with cell wall in background. (Courtesy of Daniel Cosgrove)
    Synthesizing Microbial Expansins with Unusual Activities
    Expansin proteins from diverse microbes have potential uses in deconstructing lignocellulosic biomass for conversion to renewable biofuels, nanocellulosic fibers, and commodity biochemicals.

    Read more

    High oleic pennycress. (Courtesy of Ratan Chopra)
    Pennycress – A Solution for Global Food Security, Renewable Energy and Ecosystem Benefits
    Pennycress (Thlaspi arvense) is under development as a winter annual oilseed bioenergy crop. It could produce up to 3 billion gallons of seed oil annually while reducing soil erosion and fertilizer runoff.

    Read more

  • Data & Tools
    • IMG
    • Genome Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Artistic interpretation of CheckV assessing virus genome sequences from environmental samples. (Rendered by Zosia Rostomian​, Berkeley Lab)
    An Automated Tool for Assessing Virus Data Quality
    CheckV can be broadly utilized by the research community to gauge virus data quality and will help researchers to follow best practices and guidelines for providing the minimum amount of information for an uncultivated virus genome.

    More

    Unicellular algae in the Chlorella genus, magnified 1300x. (Andrei Savitsky)
    A One-Stop Shop for Analyzing Algal Genomes
    The PhycoCosm data portal is an interactive browser that allows algal scientists and enthusiasts to look deep into more than 100 algal genomes, compare them, and visualize supporting experimental data.

    More

    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Podcast: A Primer on Genome Mining
    In Natural Prodcast: the basics of genome mining, and how JGI researchers conducted it in IMG/ABC on thousands of metagenome-derived genomes for a Nature Biotechnology paper.

    Read more

  • User Programs
    • Calls for User Proposals
    • Special Initiatives & Programs
    • User Support
    • Submit a Proposal
    Scanning electron micrographs of diverse diatoms. (Credits: Diana Sarno, Marina Montresor, Nicole Poulsen, Gerhard Dieckmann)
    Learn About the Approved 2021 Large-Scale CSP Proposals
    A total of 27 proposals have been approved through JGI's annual Community Science Program (CSP) call. For the first time, 63 percent of the accepted proposals come from researchers who have not previously been a principal investigator on an approved JGI proposal.

    Read more

    MiddleGaylor Michael Beman UC Merced
    How to Successfully Apply for a CSP Proposal
    Reach out to JGI staff for feedback before submitting a proposal. Be sure to describe in detail what you will do with the data.

    Read more

    Click on the image or go here to watch the video "Enriching target populations for genomic analyses using HCR-FISH" from the journal Microbiome describing the research.
    How to Target a Microbial Needle within a Community Haystack
    Enabled by the JGI’s Emerging Technologies Opportunity Program, researchers have developed, tested and deployed a pipeline to first target cells from communities of uncultivated microbes, and then efficiently retrieve and characterize their genomes.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Publications
    • Scientific Posters
    • Newsletter
    • Logos and Templates
    • Photos
    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Uncovering Novel Genomes from Earth’s Microbiomes
    A public repository of 52,515 microbial draft genomes generated from environmental samples around the world, expanding the known diversity of bacteria and archaea by 44%, is now available .

    More

    Green millet (Setaria viridis) plant collected in the wild. (Courtesy of the Kellogg lab)
    Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet
    In Nature Biotechnology, a very high quality reference Setaria viridis genome was sequenced, and for the first time in wild populations, a gene related to seed dispersal was identified.

    More

    The Brachypodium distachyon-B. stacei-B. hybridum polyploid model complex. (Illustrations credits: Juan Luis Castillo)
    The More the Merrier: Making the Case for Plant Pan-genomes
    Crop breeders have harnessed polyploidy to increase fruit and flower size, and confer stress tolerance traits. Using a Brachypodium model system, researchers have sought to learn the origins, evolution and development of plant polyploids. The work recently appeared in Nature Communications.

    Read more

News & Publications
Home › News Releases › Uncovering Novel Genomes from Earth’s Microbiomes

November 9, 2020

Uncovering Novel Genomes from Earth’s Microbiomes

Genome resource expands known diversity of bacteria and archaea by 44 percent.

Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)

Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth’s microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)

Despite advances in sequencing technologies and computational methods in the past decade, researchers have uncovered genomes for just a small fraction of Earth’s microbial diversity. Because most microbes cannot be cultivated under laboratory conditions, their genomes can’t be sequenced using traditional approaches. Identifying and characterizing the planet’s microbial diversity is key to understanding the roles of microorganisms in regulating nutrient cycles, as well as gaining insights into potential applications they may have in a wide range of research fields.

A public repository of 52,515 microbial draft genomes generated from environmental samples around the world, expanding the known diversity of bacteria and archaea by 44%, is now available and described November 9, 2020 in Nature Biotechnology. Known as the GEM (Genomes from Earth’s Microbiomes) catalog, this work results from a collaboration involving more than 200 scientists, researchers at the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility located at Lawrence Berkeley National Laboratory (Berkeley Lab), and the DOE Systems Biology Knowledgebase (KBase).

Metagenomics is the study of the microbial communities in the environmental samples without needing to isolate individual organisms, using various methods for processing, sequencing and analysis. “Using a technique called metagenome binning, we were able to reconstruct thousands of metagenome-assembled genomes (MAGs) directly from sequenced environmental samples without needing to cultivate the microbes in the lab,” noted Stephen Nayfach, the study’s first author and research scientist in Nikos Kyrpides’ Microbiome Data Science group. “What makes this study really stand out from previous efforts is the remarkable environmental diversity of the samples we analyzed.”

Emiley Eloe-Fadrosh, head of the JGI Metagenome Program and senior author on the study elaborated on Nayfach’s comments. “This study was designed to encompass the broadest and most diverse range of samples and environments, including natural and agricultural soils, human- and animal-host associated, and ocean and other aquatic environments – that’s pretty remarkable.”

The GEM catalog expands the bacterial and archaeal orders as seen on the phylogenetic tree, with new lineages of uncultivated genomes from the GEM catalog (in green) and previously existing reference genomes (in gray). Around the phylogenetic tree, the strip charts indicate if an order is uncultured (blue; represented only by metagenome-assembled genomes or MAGs) or cultured (gray; represented by an isolate genome). The next four strip charts indicate the environmental distribution, while the bar plot indicates the number of genomes from the GEM catalog recovered from each order. (Stephen Nayfach)

The GEM catalog expands the bacterial and archaeal orders as seen on the phylogenetic tree, with new lineages of uncultivated genomes from the GEM catalog (in green) and previously existing reference genomes (in gray). Around the phylogenetic tree, the strip charts indicate if an order is uncultured (blue; represented only by metagenome-assembled genomes or MAGs) or cultured (gray; represented by an isolate genome). The next four strip charts indicate the environmental distribution, while the bar plot indicates the number of genomes from the GEM catalog recovered from each order. (Stephen Nayfach)

Adding Value Beyond Genome Sequences

Much of the data had been generated from environmental samples sequenced by the JGI through the Community Science Program and was already available on the JGI’s Integrated Microbial Genomes & Microbiomes (IMG/M) platform. Eloe-Fadrosh noted that it was a nice example of “big-data” mining to gain a deeper understanding of the data and enhancing the value by making data publicly available.

To acknowledge the efforts of the investigators who had done the sampling, Eloe-Fadrosh reached out to more than 200 researchers around the world in accordance with the JGI data use policy. “I felt it is important to acknowledge the significant efforts to collect and extract DNA from these samples, many of which come from unique, difficult to access environments, and invited these researchers to be co-authors as part of IMG data consortium,” she said.

Listen to Dan Udwary talk about mining the catalog of Earth's microbiomes in the JGI Natural Prodcast.

Listen to study co-author Dan Udwary talk about genome mining using the GEM catalog in this episode of the JGI Natural Prodcast.

Using this massive dataset, Nayfach clustered the MAGs into 18,000 candidate species groups, 70% of which were novel compared over 500,000 existing genomes available at that time. “Looking across the tree of life, it’s striking how many uncultivated lineages are only represented by MAGs,” he said. “While these draft genomes are imperfect, they can still reveal a lot about the biology and diversity of uncultured microbes.”

Teams of researchers worked on multiple analyses harnessing the genome repository, and the IMG/M team developed several updates and features to mine the GEM catalog. (Watch this IMG webinar on Metagenome Bins to learn more.) One group mined the dataset for novel secondary metabolites of secondary metabolite biosynthetic gene clusters (BGCs), increasing these BGCs in IMG/ABC (Atlas of Biosynthetic Gene Clusters) by 31%. (Listen to this JGI Natural Prodcast episode on genome mining.) Nayfach also worked with another team on predicting host-virus connections between all viruses in IMG/VR (Virus) and the GEM catalog, associating 81,000 viruses – 70% of which had not already been associated with a host – with 23,000 MAGs.

Modeling A New Path for Metagenomics Researchers

Data from environmental samples collected at Artarctica's Dry Valleys were part of the massive dataset used to generate the genomic catalog of Earth's microbiomes. (Craig Cary, International Centre for Terrestrial Antarctic Research, University of Waikato)

Data in IMG  from environmental samples collected at Artarctica’s Dry Valleys were used for the study. (Craig Cary, International Centre for Terrestrial Antarctic Research, University of Waikato)

Building upon these resources, KBase, a multi-institutional collaborative knowledge creation and discovery environment designed for biologists and bioinformaticians, developed metabolic models for thousands of MAGs. The models are now available in a public Narrative, which provides shareable, reproducible workflows. “Metabolic modeling is a routine analysis for isolate genomes, but has not been done at scale for uncultivated microbes,” said Eloe-Fadrosh, “and we felt that the collaboration with KBase would add value beyond clustering and analysis of these MAGs.

“Just bringing this dataset into KBase has immediate value because people can find the high-quality MAGs and use them to inform future analyses,” said José P. Faria, a KBase computational biologist at Argonne National Laboratory. “The process of building a metabolic model is simple: you just select a genome or MAG and press a button to build a model from our database of mappings between biochemical reactions and annotations. We look at what was annotated in the genome and at the resulting model to assess the metabolic capabilities of the organism.” (Watch this KBase webinar on metabolic modeling.)

KBase User Engagement lead Elisha Wood-Charlson added that by demonstrating the ease with which metabolic models were generated from the GEM dataset, metagenomics researchers might consider branching into this space. “Most metagenomics researchers might not be willing to dive into an entirely new research field [metabolic modeling], but they might be interested in how biochemistry impacts what they work on. The genomics community can now explore metabolism using KBase’s easy path from genomes or MAGs to modeling that may not have been considered,” she said.

A Community Resource for Facilitating Research

Data in IMG from algal samples were used for the study. (Erica Young)

Kostas Konstantinidis of Georgia Institute of Technology, one of the co-authors whose data were part of the catalog, “I don’t think there are many institutions that can do this kind of large-scale metagenomics and that have the capacity for large scale analyses. The beauty of this study is that it’s done at this scale that individual labs cannot do, and it gives us new insights into microbial diversity and function.”

He is already finding ways to utilize the catalog in his own research on how microbes respond to climate change. “With this dataset I can see where every microbe is found, and how abundant it is. That’s very useful for my work and for others doing similar research.” Additionally, he’s interested in expanding the diversity of the reference database he’s developing called the Microbial Genomes Atlas to allow for more robust analyses by adding the MAGs.

“This is a great resource for the community,” Konstantinidis added. “It’s a dataset that is going to facilitate many more studies subsequently. And I hope JGI and other institutions continue to do this kind of projects.”

The work also used resources of the National Energy Research Scientific Computing Center (NERSC), another DOE Office of Science User Facility located at Berkeley Lab.

 

Publication: Nayfach S et al. A Genomic Catalog of Earth’s Microbiomes. Nature Biotechnology. 2020 Nov 9. doi: 10.1038/s41587-020-0718-6.

Behind the Paper: Eloe-Fadrosh E et al. Building a genomic resource across Earth’s biomes for the community.

 

Byline: Massie S. Ballon

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Podcasts
  • CSP Plans
  • Featured Profiles

Related Content:

Green Algae Reveal One mRNA Encodes Many Proteins

Screencap of green algae video for PNAS paper

An Age of CRAGE: Advances in Rapidly Engineering Non-model Bacteria

JGI-developed genetic engineering technique CRAGE lands the cover of ACS Synthetic Biology. (Wayne Keefe/Berkeley Lab)

Fields of Breeders’ Dreams: A Team Effort Toward Targeted Crop Improvements

Aerial photo of the switchgrass diversity panel late in the 2020 season at the Kellogg Biological Station in Michigan. (Robert Goodwin)

2021 JGI Proposal Call Brings New Investigators into Community Science Program

Scanning electron micrographs of diverse diatoms. (Credits: Diana Sarno, Marina Montresor, Nicole Poulsen, Gerhard Dieckmann)

Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet

Green millet (Setaria viridis) plant collected in the wild. (Courtesy of the Kellogg lab)

The More the Merrier: Making the Case for Plant Pan-genomes

Brachypodium distachyon, the model species for temperate cereals and biofuel crop grasses with a growing pangenome of one hundred genomes. Spain: Huesca, Ibieca, San Miguel de Foces. (Photography credits: Pilar Catalán)
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Emergency Info
  • Accessibility / Section 508 Statement
  • RSS feed
  • Flickr
  • LinkedIn
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2021 The Regents of the University of California