DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

    Artist rendering of genome standards being applied to deciphering the extensive diversity of viruses. (Illustration by Leah Pantea)
    Expanding Metagenomics to Capture Viral Diversity
    Along with highlighting the viruses in a given sample, metagenomics shed light on another key aspect of viruses in the environment — their sheer genetic diversity.

    More

    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    CSP New Investigators FY23 R1
    JGI Announces First Round of 2023 New Investigator Awardees
    Twice each year we look for novel research projects aligned with DOE missions and from PIs who have not led any previously-accepted proposals through the CSP New Investigator call.

    More

    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

Our Science
Home › Science Highlights › A Natural Mechanism Can Turbocharge Viral Evolution

June 25, 2021

A Natural Mechanism Can Turbocharge Viral Evolution

A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)

Genetic elements that generate targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)

The Science

The first step in the deadly dance between a virus and microbial cell is an embrace. For a virus with a “head-tail” morphology, this means using proteins on its tail fibers to latch onto a specific target on the microbial cell’s membrane. Two decades ago, a team discovered a group of viruses that had in their genomes a surprising tool: a “diversity generating retroelement,” or DGR. The DGR could mutate the virus’ tail fiber proteins, and thereby allow them to embrace different cells. Since that discovery, DGRs have been found in other viruses, bacteria, and archaea. But how widely distributed they are, and the roles that they might play in the wild, hasn’t been clear.

Now, to answer these questions, a team led by scientists at the US Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science user facility located at Lawrence Berkeley National Laboratory (Berkeley Lab), has looked for DGRs in a broad range of publicly available datasets. They’ve discovered that DGRs are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

The Impact

This research provides a much more comprehensive understanding of how a fundamental mechanism of evolution — DGRs — allows microbes to adapt to changing environments. It also sheds light on why the rapid injection of mutations in a particular gene might boost an organism’s fitness. Moreover, the discovery of more than 30,000 DGRs in this analysis, a 20-fold increase over what was previously known, throws open the doors to characterizing how DGRs work at the molecular level. Scientists might then harness them as molecular tools for research and industry applications.

The Summary

In their recently published Nature Communications article, the team used publicly available data, approximately half of which was generated by the JGI, to uncover these DGRs. DGRs were found in single microbial and viral genomes, as well as genomes sampled all at once from the same environment, called metagenomes.

Why? Simon Roux, who led the research team and is the head of the Viral Genomics group at the JGI, thinks that if you’re a virus or a microbe with a DGR, you gamble every time you mutate. But, perhaps, it works to keep throwing the dice.

There’s some evidence to support the idea. Study coauthor Stephen Nayfach, a JGI bioinformatics research scientist, found that pieces of viruses with DGRs were found, on average, in double the number of microbial genomes. That means that those viruses accessed many more potential microbial cells or hosts.

This ability isn’t enough to make them super viruses, though, said Roux. There’s a gauntlet of other cell defenses that could prevent viruses from successfully replicating, even if they managed to enter the host cell.

DGRs could prove to be powerful tools not only for viruses and other microbes, but for scientists. One emerging industry application of DGRs is to use them to create collections of protein variants, produced in engineered viruses or microbial cells. Researchers could then use these proteins to recognize individual pathogens and pull them out, like fish on a fishing line, without harming the rest of the microbial community. The study’s publicly available dataset gives researchers the opportunity to study how DGRs work and develop more of them into new biological tools.

Contacts:

BER Contact
Ramana Madupu, Ph.D.
Program Manager
Biological Systems Sciences Division
Office of Biological and Environmental Research
Office of Science
US Department of Energy
Ramana.Madupu@science.doe.gov

PI Contact
Simon Roux, Ph.D.
Viral Genomics Group Lead
DOE Joint Genome Institute
sroux@lbl.gov

Funding:

The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231. B.G.P. was supported by the Marine Biological Laboratory, by the National Science Foundation’s XSEDE computing resource (award DEB170007), and through a Challenge Grant from the California NanoSystems Institute at the University of California Santa Barbara. S.C.B. was partially supported by the U.S. Department of Energy under award DE-SC0020173. M.A.O. acknowledges funding support from the National Science Foundation (NSF) (MCB-1553721), the Camille Dreyfus Teacher-Scholar Awards Program, and the California NanoSystems Institute (CNSI) Challenge Grant Program, supported by the University of California, Santa Barbara and the University of California, Office of the President. This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the Office of Biological and Environmental Research of the DOE Office of Science through contract DE-AC02–05CH11231 between Lawrence Berkeley National Laboratory and the DOE. R.C. was supported by the Australian Research Council (DP150100244) and the Australian Antarctic Science program (project 4031). The work in the Hallam Lab was performed under the auspices of the US Department of Energy (DOE) Joint Genome Institute, an Office of Science User Facility, supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-05CH11231 through the Community Science Program (CSP), the G. Unger Vetlesen and Ambrose Monell Foundations, the Natural Sciences and Engineering Research Council of Canada, Genome British Columbia, Genome Canada, and Compute Canada and the Canada Foundation for Innovation through grants awarded to S.J.H., R.J.G. and T.A.M. acknowledge funding from Agriculture and Agri-Food Canada, the Beef Cattle Research Council and the Alberta Beef Producers. V.I.R. and S.R.S. acknowledge support for the IsoGenie Project (samples and metadata from Stordalen Mire, Sweden) by the Genomic Science Program of the United States Department of Energy Office of Biological and Environmental Research (DE-SC0004632, DE-SC0010580, DE-SC0016440), and acknowledge the IsoGenie Project Team. S.R., S.C.B., V.I.R., S.R.S. and E.A.E.-F. acknowledge support from the EMERGE Institute (NSF #2022070). Sequencing of the Stordalen Mire samples used herein was performed under BER Support Science Proposal 503530, conducted by the U.S. Department of Energy Joint Genome Institute, which is supported as described above. This manuscript has been authored by authors at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 with the U.S. Department of Energy.

Publication:

  • Roux,  et al., “Ecology and molecular targets of hypermutation in the global microbiome.” Nature Communications. 2021 May 24. 12, 3076. doi: 10.1038/s41467-021-23402-7

Related Links:

  • JGI News Release: Unveiled: Earth’s Viral Diversity
  • JGI News Release: Uncovering Novel Genomes from Earth’s Microbiomes
  • JGI News Release: Defining Quality Virus Data(sets)
  • JGI’s Integrated Microbial Genomes & Microbiomes (IMG/M) suite

 

By: Alison F. Takemura

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases, Science Highlights Tagged With: 2022-progress-sci-highlight

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.

New Research Sheds Light on Diversity in the Deep Sea

A photo taken in the deep sea. Black clouds billow out of hydrothermal vents.

Sequencing Sphagnum Leads to Discovery of Sex Chromosomes

A photo of two sphagnum species: S. divinum (red) and S. angustifolium (green)]

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.

JGI announces final round of 2022 Functional Genomics awardees

Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California