DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › Unveiled: Earth’s Viral Diversity

August 17, 2016

Unveiled: Earth’s Viral Diversity

Environmental datasets help researchers double the number of microbial phyla known to be infected by viruses.

viral diversity graphic by Zosia Rostomian, Berkeley Lab

DOE JGI researchers utilized the largest collection of assembled metagenomic datasets from around the world to uncover over 125,000 partial and complete viral genomes, the majority of them infecting microbes. (Graphic by Zosia Rostomian, Berkeley Lab)

The number of microbes in, on, and around the planet – on the order of a nonillion, or 1030 – is estimated to outnumber the stars in the Milky Way. Microbes are known to play crucial roles in regulating carbon fixation, as well as maintaining global cycles involving nitrogen, sulfur, and phosphorus and other nutrients, but the majority of them remain uncultured and unknown. The U.S. Department of Energy (DOE) is targeting this “microbial dark matter” to better understand the planet’s microbial diversity and glean from nature lessons that can be applied toward energy and environmental challenges.

Plumbing the Earth’s microbial diversity, though, requires learning more about the poorly-studied relationships between microbes and the viruses that infect them, viruses that impact the microbes’ abilities to regulate global cycles. Although the number of viruses is estimated to be at least two orders of magnitude more than the microbial cells on the planet, there are currently less than 2,200 sequenced DNA virus genomes, compared to the approximately 50,000 bacterial genomes, in sequence databases. In a study published online August 17, 2016 in Nature, researchers at the DOE Joint Genome Institute (JGI), a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, utilized the largest collection of assembled metagenomic datasets from around the world to uncover over 125,000 partial and complete viral genomes, the majority of them infecting microbes. This single effort increases the number of known viral genes by a factor of 16, and provides researchers with a unique resource of viral sequence information.

“It is the first time that someone has looked systematically across all habitats and across such a large compendium of data,” said study senior author and DOE JGI Prokaryote Super Program head Nikos Kyrpides. “A key to uncover all these novel viruses was the sensitive computational approach we have developed along this work.”

“A key to uncover novel viruses”

That approach, explained first author and postdoctoral fellow David Paez-Espino, involved using a non-targeted metagenomic approach, referencing both isolate viruses and manually curated viral protein models, and what he described as “the largest and most diverse dataset to date.” The team analyzed over 5 trillion bases (Terabases or Tb) of sequence available in the DOE JGI’s Integrated Microbial Genomes with Microbiome Samples (IMG/M) system collected from 3,042 samples around the world from 10 different habitat types. Their efforts to sift through the veritable haystack of datasets yielded over 125,000 viral sequences containing 2.79 million proteins.

The team matched viral sequences against multiple samples in multiple habitats. For example, one viral group they identified was found in 95 percent of all samples in the ocean’s twilight zone – a region located between 200 and 1,000 meters below the ocean surface where insufficient sunlight penetrates for microorganisms to perform photosynthesis.

By analyzing a CRISPR-Cas system – an immune mechanism in bacteria that confers resistance to foreign genetic elements by incorporating short sequences from infecting viruses and phages – the team was able to generate a database of 3.5 million spacer sequences in IMG. These spacers, fragments of phage genetic sequences retained by the host, can then be used to explore viral and phage metagenomes for where the fragments may have originally come from. Also, using mainly this approach, the team computationally identified the host for nearly 10,000 viruses. “The majority of these connections were previously unknown, and include the identification of organisms serving as viral hosts from 16 prokaryotic phyla for which no viruses have previously been identified,” they reported.

Beacons for CRISPR-Cas proteins

Jan-Fang Cheng, head of the DOE JGI’s Functional Genomics group, said the work being done by Kyrpides’ group in identifying new viral sequences will help the Synthetic Biology group develop novel promoters that can work in many bacterial hosts. “We are constantly searching for regulatory DNA parts that will work across many different phyla, and that would allow us to build genes and pathways that can express in many different hosts.”

Cheng also anticipated that the expanded viral sequence space generated by Kyrpides’ team will allow researchers to look for other genetic sequences known as proto-spacer adjacent motifs (PAMs). These sequences lie next to spacer sequencers in phages and are used as beacons by CRISPR-Cas proteins, triggering actions such as editing or regulating a gene. “People are looking for new PAM sequences and new Cas9s, and with this new information, if you can map the spacer sequence back to the same phage and align them and see what’s in common in neighboring sequences, then you could ID new PAM sequences.”

“We believe that the finding of many large phages including the longest phage genome reported thus far points to the limitations of conventional virome enrichment and sequencing strategies which may bias the studies against the highly novel viruses with unusual properties”, said Natalia Ivanova, group lead in the Super Program and co-author of this study.

“One of the most important aspects of this study is that we did not focus on a single habitat type. Instead, we explored the global virome and examined the flow of viruses across all ecosystems,” said Kyrpides. “We have increased the number of viral sequences by 50x, and 99 percent of the virus families identified are not closely related to any previously sequenced virus. This provides an enormous amount of new data that would be studied in more detail in the years to come. We have more than doubled the number of microbial phyla that serve as hosts to viruses, and have created the first global viral distribution map. The amount of analysis and discoveries that we anticipate will follow this dataset cannot be overstated.”

The work also used resources at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

JGI Contributes Nine to 2022 Highly Cited Researchers List

Nine headshots, one for each researcher, laid out beside a purple ribbon reading, "Home to Highly Cited Researchers 2022 Clarivate"

JGI announces first round of 2023 New Investigator awardees

Digital ID card with 10 headshots reads: Congratulations to our 2023 New Investigator recipients!

JGI at 25: Following Fungi that Pry Apart Plant Polymers

A brown goat with white horns looks at green hay

Exploring Possibilities: 2022 JGI-UC Merced Interns

2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)

JGI at 25: Using team science to build communities around data

JGI at 25: Expanding Metagenomics to Capture Viral Diversity

Artist rendering of genome standards being applied to deciphering the extensive diversity of viruses. (Illustration by Leah Pantea)
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California