DOE Joint Genome Institute

  • About Us
  • Phone Book
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Products
    • Science Highlights
    • Scientists
    Sorghum variety BTx642 grown in Central Valley at temperatures around 100 degrees for 65 days without water. It is still green and filling grain to almost the same extent as plants that were watered weekly. (Jeffrey Dahlberg, UC ANR Agricultural Research and Extension Center)
    Dealing with Drought: Uncovering Sorghum’s Secrets
    Sorghum bicolor (L.) Moench is an African grass that adroitly handles droughts, floods and poor soils. This is the first paper that describes sorghum’s response to drought, from a large-scale field experiment led by a multi-institutional consortium to uncover the mechanisms behind sorghum’s capacity to produce high yields despite drought conditions.

    Read more

    The lichen Gray’s Cup (Cladonia grayi), with its namesake goblet structures. (Thomas Barlow)
    Making a Lichen Together
    Despite a century-and-a-half of lichen research, many details of lichen symbiosis remain unclear. For the first time, a team has analyzed in parallel the genomes and transcriptomes of both partners to better understand lichen.

    Read more

    Poplar cuttings inoculated with M. elongata strain PM193 (far right) grow larger in 30 percent forest soil / 70 percent sand than without PM193 (middle). On the left are controls grown in sterile sand. (Chih-Ming Hsu)
    Fungus Fuels Tree Growth
    Poplar is the fastest growing hardwood tree in the western United States, making it an energy feedstock of particular interest to the U.S. Department of Energy (DOE). The fungus is almost always found among and within poplar trees, and in an effort to understand its influence on the plant, a team of scientists studied what happens to the tree’s physical traits and gene expression when the fungus is present.

    Read more

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Jorge Rodrigues is interested in the biological causes of methane flux variation in the Amazon rainforest. (Courtesy of Jorge Rodrigues)
    Methane Flux in the Amazon
    Wetlands are the single largest global source of atmospheric methane. This project aims to integrate microbial and tree genetic characteristics to measure and understand methane emissions at the heart of the Amazon rainforest.

    Read more

    Vampirovibrio chlorellavorus in yellow on green host. (Courtesy of Judith Brown)
    Infections and Host-Pathogen Interactions of Chlorella
    The non-photosynthetic, predatory cyanobacterium Vampirovibrio chlorellavorus is a globally important obligate pathogen of Chlorella species/strains, which are of interest as biofuel feedstocks.

    Read more

    Morphological diversity of Sordariales growing in the lab. Pierre Gladieux's proposal explores functional diversity in Neurospora and its relatives. (Pierre Gladieux, INRA Montpellier)
    Insights into Functional Diversity in Neurospora
    This proposal investigates the genetic bases of fungal thermophily, biomass-degradation, and fungal-bacterial interactions in Sordariales, an order of biomass-degrading fungi frequently encountered in compost and encompassing one of the few groups of thermophilic fungi.

    Read more

  • Data & Tools
    • IMG
    • Genome Portal
    • MycoCosm
    • Phytozome
    • GOLD
    Improving the Cacao Genome and Phytozome
    An updated reference genome for Theobroma cacao Matina 1-6 has now been completed and released by HudsonAlpha scientists, with the help of Mars Wrigley funding. The annotated genome has been updated to a high quality modern standard and includes RNA-seq data. The improved genome is available for comparative purposes on the latest version of the JGI plant portal Phytozome (phytozome-next.JGI.doe.gov).

    Read more

    Panorama of Washburn Hot Springs (Yellowstone National Park). Sediments from the upper pool were sampled and subjected to DNA sequencing by the DOE-Joint Genome Institute (YNP Research Permit: YELL-2012-SCI-05068, PI: W. Inskeep. Image: R. Hatzenpichler).
    Expanding Universe of Methane Metabolisms in Archaea
    In Nature Microbiology, researchers mined the Integrated Microbial Genomes & Microbiomes (IMG/M) database maintained by the JGI for publicly available metagenome data provided by the other study co-authors, and reconstructed from these 10 metagenome-assembled genomes (MAGs) representing new potential methanogenic, anaerobic methanotrophic and short-chain alkane-oxidizing archaea.

    Read more

    Click on the image above or click here (https://youtu.be/iSEEw4Vs_B4) to watch a CRISPR Whiteboard Lesson from the Innovative Genomics Institute, this one focuses on the PAM sequence.
    Mining IMG/M for CRISPR-Associated Proteins
    Researchers report the discovery of miniature CRISPR-associated proteins that can target single-stranded DNA. The discovery was made possible by mining the datasets in the Integrated Microbial Genomes and Microbiomes (IMG/M) suite of tools managed by the JGI. The sequences were then biochemically characterized by a team led by Jennifer Doudna’s group at UC Berkeley.

    Read more

  • User Programs
    • Calls for User Proposals
    • Special Initiatives & Programs
    • User Support
    • Submit a Proposal
    martin-adams-unsplash
    CSP Functional Genomics Call Ongoing
    The CSP Functional Genomics call helps users translate genomic information into biological function. Proposals submitted by January 31, 2019 will be part of the next review.

    Read more

    MiddleGaylor Michael Beman UC Merced
    CSP New Investigator Call Ongoing
    The CSP New Investigator call targets investigators and research initiatives new to the JGI. Proposals submitted by March 2, 2020 will be part of the next review.

    Read more

    What Happens Underground Influences Global Nutrient Cycles
    Through the Facilities Integrating Collaborations for User Science (FICUS) program, the Environmental Molecular Sciences Laboratory (EMSL) and the DOE Joint Genome Institute (JGI) have selected 11 proposals for support from 53 received through a joint research call.

    Read more

  • News & Publications
    • News Releases
    • Blog
    • Publications
    • Scientific Posters
    • Newsletter
    • Logos
    • Photos
    Characterizing Communities: Latest CSP Portfolio
    Through JGI's Community Science Program, 24 large-scale proposals have been accepted from 70 full submissions based on 92 letters of intent. Additionally, 40 percent of the proposals were submitted by researchers who had not been a primary investigator on any proposals previously accepted through JGI’s calls.

    Read more

    Learning to Look
    Using machine learning, JGI researchers combed through more than 70,000 microbial and metagenome datasets, ultimately identifying more than 10,000 inovirus-like sequences compared to the 56 previously known inovirus genomes.

    Read more

    Left to Right: Rex Malmstrom, Emiley Eloe-Fadrosh, and Simon Roux.
    JGI Early Career Researchers in mSystems Special Issue
    JGI researchers are among the authors who offer perspectives on what the next five years of innovation could look like. In one article, Rex Malmstrom and Emiley Eloe-Fadrosh outline more targeted approaches to reconstruct individual microbes in an environmental sample. In a separate article, Simon Roux makes a pitch for readers to get involved in the developing field of virus ecogenomics.

    Read more

News & Publications
Home › News Releases › Defining Quality Virus Data(sets)

December 17, 2018

Defining Quality Virus Data(sets)

International consortium offers guidelines, best practices for characterizing uncultivated viruses.

Artist rendering of genome standards being applied to deciphering the extensive diversity of viruses. (Illustration by Leah Pantéa)

Artist rendering of genome standards being applied to deciphering the extensive diversity of viruses. (Illustration by Leah Pantéa)

Microbes in, on and around the planet are said to outnumber the stars in the Milky Way Galaxy. The total number of viruses is expected to vastly exceed even that calculation.

While many viruses remain unknown and uncultivated, advances in genome sequencing and analyses have allowed researchers to identify more than 750,000 uncultivated virus genomes from metagenomic and metatranscriptomic data sets. In IMG/VR, a database for virus sequences established and maintained by researchers at the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility, the viral diversity available has tripled within a single year.

As more and more researchers continue to assemble new genome sequences of uncultivated viruses, JGI researchers led a community effort to develop guidelines and best practices for defining virus data quality. In a report published December 17, 2018, in Nature Biotechnology, JGI partnered with a number of virus experts; as well as representatives from the Genomic Standards Consortium (GSC), an open-membership working body that engages the research community in the standards development process; and the International Committee on Taxonomy of Viruses, the premier authority on the official taxonomy of viruses which is currently re-evaluating virus classification based on sequence-based information.

Guidelines for Quality and Analyses

“Viruses are critical components of every microbial ecosystem. The JGI is especially interested in developing standards for virus genomes because we generate much of this data ourselves,” said JGI research scientist and first author Simon Roux. “We are part of a small group of researchers who have scrutinized these data at length, have seen the metrics, and can provide guidance to help determine data quality. Additionally, in this paper, we’ve tried to provide not just standards, but also outline what type of analyses can be performed on these data, to help researchers who want to characterize their own novel viruses.”

Cultured viruses already have their own data quality standards, but these cannot be directly applied to uncultured viruses, whose sequences are often incomplete and for which some properties can only be predicted indirectly using computational approaches.

“The uncultivated virus genome community has come together to define what is important to report and valuable to the research community,” said GSC President Lynn Schriml of the Institute of Genome Sciences at University of Maryland School of Medicine. The GSC includes representatives from the National Center for Biotechnology Information (NCBI), the European Bioinformatics Institute, and the DNA Data Bank of Japan (DDBJ), who also collaborated on this article.

Categories of Virus Genome Quality

In the paper, Roux and his colleagues outlined the minimum amount of information for an uncultivated virus genome, including the source, methods of identification of the virus genome, and data quality. The JGI has previously developed standards for the minimum metadata to be reported with single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) submitted to public databases.

“The tremendous growth of virus sequence data, and microbiome data in general, necessitates robust standards and data quality metrics to allow the research community to leverage this data for comparative analyses,” said JGI Metagenome Program head and study senior author Emiley Eloe-Fadrosh. “By establishing and promoting ‘best practices,’ the research community has the opportunity to break down barriers of data accessibility and reusability, thereby amplifying the research beyond the initial project scope.”

The team proposed three categories of genome quality. “Genome fragments” are comprised of single or multiple fragments that are predicted to be less than 90 percent complete, or have no estimated genome size, and are minimally annotated. A “high-quality draft genome” is estimated to represent 90 percent or more of the complete expected genome sequence, in fragment(s) where any gaps span mostly repetitive regions. Finally, a “finished genome” would include both a complete genome comprised of a single contiguous sequence without gaps, and extensive annotation.

“If you’re going to build a standard,” Schriml noted, “it is essential to discuss what should be represented with the research community, taxonomists and database providers and to integrate these data needs into the standard.”  Schriml added journals have also started endorsing the application of the GSC’s “Minimum Information about any (X) Sequence (MIxS)” guidelines, the umbrella under which the uncultivated virus genome standards and other similar community efforts reside. The GSC tracks the adoption of these standards developed over the past decade using records uploaded to the BioSample database. These records reflect individual samples collected, sequenced and annotated, and Schriml said that nearly 450,000 BioSample records currently reference MIxS guidelines, up from 326,000 records tracked in the spring.

 

Reference: Roux S et al. Minimum Information about an Uncultivated Virus Genome (MIUViG). Nature Biotechnology. 17 December 2018. https://doi.org/10.1038/nbt.4306

 

Byline: Massie Santos Ballon

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI, headquartered in Walnut Creek, Calif., provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • News Releases
  • Science Highlights
  • Blog
  • CSP Plans
  • Featured Profiles

Related Content:

Characterizing Communities: JGI Announces Latest CSP Portfolio

What Happens Underground Influences Global Nutrient Cycles

Learning to Look

Hidden Giants in Forest Soils

One of the heated plots at the Harvard Forest (Jeff Blanchard)

Symbiosis a Driver of Truffle Diversity

Truffe noire du Peěrigord (Tuber melanosporum). (Francis Martin)

Probing Interactions Among Molecular Mechanisms, Cellular Processes, and Elemental Cycles

Cropped image of switchgrass microcosm showing established root network. (James Moran)
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Emergency Info
  • Accessibility / Section 508 Statement
  • RSS feed
  • Facebook
  • Flickr
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2019 The Regents of the University of California