DOE Joint Genome Institute

  • COVID-19
  • About
  • Phones
  • Contacts
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Products
    • Science Highlights
    • Scientists
    Maize can produce a cocktail of antibiotics with a handful of enzymes. (Sam Fentress, CC BY-SA 2.0)
    How Maize Makes An Antibiotic Cocktail
    Zealexins are produced in every corn variety and protect maize by fending off fungal and microbial infections using surprisingly few enzymes.

    More

    The genome of the common fiber vase or Thelephora terrestris was among those used in the study. (Francis Martin)
    From Competition to Cooperation
    By comparing 135 fungal sequenced genomes, researchers were able to carry out a broader analysis than had ever been done before to look at how saprotrophs have transitioned to the symbiotic lifestyle.

    More

    Miscanthus grasses. (Roy Kaltschmidt/Berkeley Lab)
    A Grass Model to Help Improve Giant Miscanthus
    The reference genome for M. sinensis, and the associated genomic tools, allows Miscanthus to both inform and benefit from breeding programs of related candidate bioenergy feedstock crops such as sugarcane and sorghum.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Poplar (Populus trichocarpa and P. deltoides) grow in the Advanced Plant Phenotyping Laboratory (APPL) at Oak Ridge National Laboratory in Tennessee. Poplar is an important biofuel feedstock, and Populus trichocarpa is the first tree species to have its genome sequenced — a feat accomplished by JGI. (Image courtesy of Oak Ridge National Laboratory, U.S. Dept. of Energy)
    Podcast: Xiaohan Yang on A Plantiful Future
    Building off plant genomics collaborations between the JGI and Oak Ridge National Laboratory, Xiaohan Yang envisions customizing plants for the benefit of human society.

    More:

    Expansin complex with cell wall in background. (Courtesy of Daniel Cosgrove)
    Synthesizing Microbial Expansins with Unusual Activities
    Expansin proteins from diverse microbes have potential uses in deconstructing lignocellulosic biomass for conversion to renewable biofuels, nanocellulosic fibers, and commodity biochemicals.

    Read more

    High oleic pennycress. (Courtesy of Ratan Chopra)
    Pennycress – A Solution for Global Food Security, Renewable Energy and Ecosystem Benefits
    Pennycress (Thlaspi arvense) is under development as a winter annual oilseed bioenergy crop. It could produce up to 3 billion gallons of seed oil annually while reducing soil erosion and fertilizer runoff.

    Read more

  • Data & Tools
    • IMG
    • Genome Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Artistic interpretation of CheckV assessing virus genome sequences from environmental samples. (Rendered by Zosia Rostomian​, Berkeley Lab)
    An Automated Tool for Assessing Virus Data Quality
    CheckV can be broadly utilized by the research community to gauge virus data quality and will help researchers to follow best practices and guidelines for providing the minimum amount of information for an uncultivated virus genome.

    More

    Unicellular algae in the Chlorella genus, magnified 1300x. (Andrei Savitsky)
    A One-Stop Shop for Analyzing Algal Genomes
    The PhycoCosm data portal is an interactive browser that allows algal scientists and enthusiasts to look deep into more than 100 algal genomes, compare them, and visualize supporting experimental data.

    More

    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Podcast: A Primer on Genome Mining
    In Natural Prodcast: the basics of genome mining, and how JGI researchers conducted it in IMG/ABC on thousands of metagenome-derived genomes for a Nature Biotechnology paper.

    Read more

  • User Programs
    • Calls for User Proposals
    • Special Initiatives & Programs
    • User Support
    • Submit a Proposal
    Scanning electron micrographs of diverse diatoms. (Credits: Diana Sarno, Marina Montresor, Nicole Poulsen, Gerhard Dieckmann)
    Learn About the Approved 2021 Large-Scale CSP Proposals
    A total of 27 proposals have been approved through JGI's annual Community Science Program (CSP) call. For the first time, 63 percent of the accepted proposals come from researchers who have not previously been a principal investigator on an approved JGI proposal.

    Read more

    MiddleGaylor Michael Beman UC Merced
    How to Successfully Apply for a CSP Proposal
    Reach out to JGI staff for feedback before submitting a proposal. Be sure to describe in detail what you will do with the data.

    Read more

    Click on the image or go here to watch the video "Enriching target populations for genomic analyses using HCR-FISH" from the journal Microbiome describing the research.
    How to Target a Microbial Needle within a Community Haystack
    Enabled by the JGI’s Emerging Technologies Opportunity Program, researchers have developed, tested and deployed a pipeline to first target cells from communities of uncultivated microbes, and then efficiently retrieve and characterize their genomes.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Uncovering Novel Genomes from Earth’s Microbiomes
    A public repository of 52,515 microbial draft genomes generated from environmental samples around the world, expanding the known diversity of bacteria and archaea by 44%, is now available .

    More

    Green millet (Setaria viridis) plant collected in the wild. (Courtesy of the Kellogg lab)
    Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet
    In Nature Biotechnology, a very high quality reference Setaria viridis genome was sequenced, and for the first time in wild populations, a gene related to seed dispersal was identified.

    More

    The Brachypodium distachyon-B. stacei-B. hybridum polyploid model complex. (Illustrations credits: Juan Luis Castillo)
    The More the Merrier: Making the Case for Plant Pan-genomes
    Crop breeders have harnessed polyploidy to increase fruit and flower size, and confer stress tolerance traits. Using a Brachypodium model system, researchers have sought to learn the origins, evolution and development of plant polyploids. The work recently appeared in Nature Communications.

    Read more

News & Publications
Home › News Releases › Defining Standards for Genomes from Uncultivated Microorganisms

August 9, 2017

Defining Standards for Genomes from Uncultivated Microorganisms

Expanding minimum information standards for single-cell genomics, metagenomics datasets.

During the Industrial Revolution, factories began relying on machines rather than people for mass production. Amidst the societal changes, standardization crept in, from ensuring nuts and bolts were made identically to maintain production quality, to a standard railroad gauge used on both sides of the Atlantic. The importance of standards is dramatically illustrated when they don’t exist or are not commonly accepted, e.g., Macs, vs. PCs, or even pounds vs. kilograms.

The importance of standards is dramatically illustrated when they don’t exist or are not commonly accepted. an international team led by DOE JGI researchers has developed standards for the minimum metadata to be supplied with single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) submitted to public databases. (Zosia Rostomian, Berkeley Lab Creative Services)

The importance of standards is dramatically illustrated when they don’t exist or are not commonly accepted. an international team led by DOE JGI researchers has developed standards for the minimum metadata to be supplied with single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) submitted to public databases. (Zosia Rostomian, Berkeley Lab Creative Services)

More than a century after the Industrial Revolution, advances in DNA sequencing technologies have caused similarly dramatic shifts in scientific research, and one aspect is studying the planet’s biodiversity. Microbes play crucial roles in regulating global cycles involving carbon, nitrogen, and phosphorus among others, but many of them remain uncultured and unknown. Learning more about this so-called “microbial dark matter” involves extracting microbial genomes from the amplified DNA of single cells and from metagenomes. As genomic data production has ramped up over the past two decades and is being generated on various platforms around the world, scientists have worked together to establish definitions for terms such as “draft assembly” and data collection standards that apply across the board. One critical term that needs standardization is “metadata,” defined simply as “data about other data.” In the case of sequence data, metadata can encompass what organism or cell was sequenced, where it came from, what it was doing, quality metrics, and a spectrum of other characteristics that add value to the sequence data by providing context for it and enabling greater biological understanding of the significance of the sequence.

Published August 8, 2017 in Nature Biotechnology, an international team led by researchers at the U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science User Facility, has developed standards for the minimum metadata to be supplied with single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) submitted to public databases. “Over the last several years, single-cell genomics has become a popular tool to complement metagenomics,” said study senior author Tanja Woyke, head of the DOE JGI Microbial Program. “Starting 2007, the first single-cell genomes from environmental cells appeared in public databases and they are draft assemblies with fluctuations in the data quality. Metagenome-assembled genomes have similar quality challenges. For researchers who want to conduct comparative analyses, it’s really important to know what goes into the analysis. Robust comparative genomics relies on extensive and correct metadata.”

Categories of Genome Quality

In their paper, Woyke and her colleagues proposed four categories of genome quality. Low-Quality Drafts would be less than 50 percent complete, with minimal review of the assembled fragments and less than 10 percent contaminated with non-target sequence. Medium-Quality Drafts would be at least 50 percent complete, with minimal review of the assembled fragments and less than 10 percent contamination. High-Quality Drafts would be more than 90 percent complete with the presence of the 23S, 16S and 5S rRNA genes, as well as at least 18 tRNAs, and with less than 5 percent contamination. The Finished Quality category is reserved for single contiguous sequences without gaps and less than 1 error per 100,000 base pairs.

The DOE JGI has generated approximately 80 percent of the over 2,800 SAGs and more than 4,500 MAGs currently accessible on the DOE JGI’s Genomes OnLine Database (GOLD). DOE JGI scientist and study first author Bob Bowers said many of the SAGs already in GOLD would be considered Low-Quality or Medium-Quality Drafts. These are highly valuable datasets, though for some purposes, researchers might prefer to use High-Quality or Finished datasets. “Single cell and metagenomic datasets vary greatly in their overall quality. However, in cases where a low quality, fragmented genome is the only representative of a new branch on the tree of life, some data is better than no data,” he added. “Bringing up the proposed categories will force scientists to carefully consider genome quality before submission to the public databases.”

From Proposal to Community Implementation

Moving from a proposal in print to implementation requires community buy-in. Woyke and Bowers conceived of the minimum metadata requirements for SAGs and MAGs as extensions to existing metadata standards for sequence data, referred to as “MIxS,” developed and implemented by the Genomic Standards Consortium (GSC) in 2011. The GSC is an open-membership working body that ensures the research community is engaged in the standards development process and includes representatives from the National Center for Biotechnology Information (NCBI) and the European Bioinformatics Institute (EBI). This is important since these are the main data repositories where the minimum metadata requirements are implemented. By working directly with the data providers, the GSC can assist both large-scale data submitters and databases to align with the MIxS standard and submit compliant data.

“Other key public microbiome data management systems such as MG-RAST, IMG and GOLD have also adapted the MIxS standards,” said Nikos Kyrpides, head of the DOE JGI Prokaryote Super Program and GSC Board member. He notes that as part of the DOE JGI’s core mission, the Institute has been involved in organizing the community to develop genomic standards. “The GSC has been instrumental in bringing the community together to develop and implement a growing body of relevant standards. In fact, the need to expand MIxS to uncultivated organisms was identified in one of the recent GSC meetings at the DOE JGI.”

“These extensions complement the MIxS suite of metadata standards by defining the key data elements pertinent for describing the sampling and sequencing of single-cell genomes and genomes from metagenomes,” said GSC President and study co-author Lynn Schriml of the Institute of Genome Sciences at University of Maryland School of Medicine. “These standards open up a whole new area of metadata data exploration as the vast majority of microbes, referred to as microbial dark matter, are currently not described within the MIxS standard.”

She described the group and their mission as community-driven. “I think it helps that the people developing standards are the people conducting the studies,” she said. “We have a vested interest in the data. Research is growing and expanding and it is critical that we capture this data in a rigorous way. Developing these novel metadata standards enables researchers to consistently report the most critical metadata for analysis. Capturing data using controlled vocabularies facilitates data consistency, thus making the databases richer and reusable.” And in the end, it is to be hoped, sequence data accompanied by agreed-on standards for metadata will mean the same thing to everyone who wants to use it.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Podcasts
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Green Algae Reveal One mRNA Encodes Many Proteins

Screencap of green algae video for PNAS paper

An Age of CRAGE: Advances in Rapidly Engineering Non-model Bacteria

JGI-developed genetic engineering technique CRAGE lands the cover of ACS Synthetic Biology. (Wayne Keefe/Berkeley Lab)

Fields of Breeders’ Dreams: A Team Effort Toward Targeted Crop Improvements

Aerial photo of the switchgrass diversity panel late in the 2020 season at the Kellogg Biological Station in Michigan. (Robert Goodwin)

Uncovering Novel Genomes from Earth’s Microbiomes

Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)

2021 JGI Proposal Call Brings New Investigators into Community Science Program

Scanning electron micrographs of diverse diatoms. (Credits: Diana Sarno, Marina Montresor, Nicole Poulsen, Gerhard Dieckmann)

Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet

Green millet (Setaria viridis) plant collected in the wild. (Courtesy of the Kellogg lab)
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Emergency Info
  • Accessibility / Section 508 Statement
  • RSS feed
  • Flickr
  • LinkedIn
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2021 The Regents of the University of California