DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

    Algae growing in a bioreactor. (Dennis Schroeder, NREL)
    Refining the Process of Identifying Algae Biotechnology Candidates
    Researchers combined expertise at the National Labs to screen, characterize, sequence and then analyze the genomes and multi-omics datasets for algae that can be used for large-scale production of biofuels and bioproducts.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

    Ian Rambo, graduate student at UT-Austin, was a DOE Graduate Student Research Fellow at the JGI
    Virus-Microbe Interactions of Mud Island Mangroves
    Through the DOE Office of Science Graduate Student Research (SCGSR) program, Ian Rambo worked on part of his dissertation at the JGI. The chapter focuses on how viruses influence carbon cycling in coastal mangroves.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

    Integrating JGI Capabilities for Exploring Earth’s Secondary Metabolome
    Natural Prodcast podcast: Nigel Mouncey
    JGI Director Nigel Mouncey has a vision to build out an integrative genomics approach to looking at the interactions of organisms and environments. He also sees secondary metabolism analysis and research as a driver for novel technologies that can serve all JGI users.

    More

Our Science
Home › Science Highlights › An Automated Tool for Assessing Virus Data Quality

December 21, 2020

An Automated Tool for Assessing Virus Data Quality

CheckV can help researchers assess virus sequence fragments and data quality.

The Science

Artistic interpretation of CheckV assessing virus genome sequences from environmental samples. (Rendered by Zosia Rostomian​, Berkeley Lab)

Artistic interpretation of CheckV assessing virus genome sequences from environmental samples. (Rendered by Zosia Rostomian​, Berkeley Lab)

Through advances in sequencing technologies and computational approaches, more and more virus sequences are being recovered and identified from environmental samples (metagenomes). However, the quality and completeness of metagenome-assembled virus sequences vary widely. In a previous effort, an international consortium recommended specific guidelines and best practices for characterizing uncultivated viruses. Following up on those guidelines, JGI researchers have now developed CheckV (pronounced “Check-Vee”) to help researchers assess and improve the quality of metagenome-assembled viral genomes.

The Impact

The microbes that play key roles in cycling nutrients such as carbon, nitrogen and sulfur are themselves regulated by viruses in their environments. Environmental DNA sequencing can help scientist to recover the genomes of these viruses and associate them with their microbial hosts. However, assembling viral genomes from metagenomes is challenging and often results in highly fragmented data, which limits the ability of researchers to accurately perform functional assessment, host prediction, and phylogenetic analysis. The development of CheckV helps researchers to assess the completeness of these sequences and complements a community effort to develop guidelines and best practices for defining virus data quality.

Summary

Characterizing viral genome fragments can be difficult, akin to the story of the blind men who encounter an elephant for the first time. Based on the single body part each blind man touches – a tusk, the ear, or the tail – they individually decide that the elephant is either dangerous, akin to a carpet, or a harmless piece of rope. Similarly, genome fragments can provide an incomplete picture of a virus, and for viruses that have integrated into the host genome, these sequences may be tainted by the presence of non-viral genes.

Up to this point, there has been a lack of fast and accurate tools for researchers to assess the quality of metagenome-assembled viral genomes, including estimation of genome completeness and removal of contamination from the host organism. As reported in Nature Biotechnology, a team from the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility located at Lawrence Berkeley National Laboratory (Berkeley Lab), has developed a command-line tool called CheckV that can automatically do both. The work was led by research scientist Stephen Nayfach, the study’s first author in the Microbiome Data Science group led by Nikos Kyrpides.

To demonstrate its utility, Nayfach applied CheckV to sequences of uncultivated viruses (from environmental metagenome samples) from IMG/VR, a database that is part of the Integrated Microbial Genomes & Microbiomes (IMG/M) suite, as well as sequences from the Global Ocean Virome 2.0 dataset based on open ocean samples. CheckV identified a total of 44,652 complete or near-complete viral genomes across both datasets, separating these from the vast majority of other sequences that were incomplete fragments. Additionally, CheckV was able to identify just over 17,000 contiguous sequences (contigs) of proviruses flanked on one or both sides by genes from the host organism. With the virus-host boundary clearly defined using functional annotation methods, it was possible to distinguish between metabolic genes found in the viral genome versus those from the host organism. Without this prediction step, numerous genes for antibiotic resistance and secondary metabolism would have been incorrectly attributed to viruses.

The tool can be broadly utilized by the research community to gauge virus data quality and will help researchers to follow best practices and guidelines for providing the minimum amount of information for an uncultivated virus genome. CheckV has already been applied to over 2.4 million viral genomes available in the latest release of IMG/VR.

CheckV is freely available for download at: http://bitbucket.org/berkeleylab/CheckV.

Contacts:

BER Contact
Ramana Madupu, Ph.D.
Program Manager
Biological Systems Sciences Division
Office of Biological and Environmental Research
Office of Science
US Department of Energy
Ramana.Madupu@science.doe.gov

PI Contact
Nikos Kyrpides
Microbiome Data Science Group
DOE Joint Genome Institute
nckyrpides@lbl.gov

Funding:

The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. This work was also supported the grant #2016/23218-0 from São Paulo Research Foundation (FAPESP). A.P.C. received a scholarship #2018/04240-0 from FAPESP.

Publication:

  • Nayfach S et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnology. 21 Dec 2020. doi: 1038/s41587-020-00774-7

Related Links:

  • JGI News Release: Uncovering Novel Genomes from Earth’s Microbiomes
  • JGI News Release: Defining Quality Virus Data(sets)
  • JGI’s Integrated Microbial Genomes & Microbiomes (IMG/M) suite
  • JGI’s IMG/VR data portal for viruses

 

Byline: Massie S. Ballon

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases, Science Highlights Tagged With: 2022-progress-sci-highlight

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

JGI at 25: Solving the Mystery of the Missing Oil

A surface slick in the Gulf of Mexico, taken ~1.5 km from the Deepwater Horizon wellhead (Olivia Mason, LBNL).

JGI at 25: The Human Genome Project, or the JGI’s Origin Story

JGI contributions detailed in DOE Human Genome Project poster

JGI at 25: A Single Cell, Myriad Microbial Discoveries

Artistic rendering of a microbial genome layered over a dark forest. (Composition by Zosia Rostomian/Berkeley Lab)

Calculating the Costs of Multiple Switchgrass Gene Copies

: Documented occurrences of different switchgrass cytotypes (4X in blue and 8X in orange) throughout the United States. One of the early interests in exploring 8X switchgrass was because the noticeable occurrence of 8X in 4X distribution gaps. (Joseph Napier)

The Power of One, Amplified

One of the pools at Dewar Creek hot springs in British Columbia, Canada. (Allyson Brady)

JGI at 25: Roots of a Mutualist Relationship

Laccaria bicolor
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2022 The Regents of the University of California