DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

    Algae growing in a bioreactor. (Dennis Schroeder, NREL)
    Refining the Process of Identifying Algae Biotechnology Candidates
    Researchers combined expertise at the National Labs to screen, characterize, sequence and then analyze the genomes and multi-omics datasets for algae that can be used for large-scale production of biofuels and bioproducts.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

    Ian Rambo, graduate student at UT-Austin, was a DOE Graduate Student Research Fellow at the JGI
    Virus-Microbe Interactions of Mud Island Mangroves
    Through the DOE Office of Science Graduate Student Research (SCGSR) program, Ian Rambo worked on part of his dissertation at the JGI. The chapter focuses on how viruses influence carbon cycling in coastal mangroves.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

    Integrating JGI Capabilities for Exploring Earth’s Secondary Metabolome
    Natural Prodcast podcast: Nigel Mouncey
    JGI Director Nigel Mouncey has a vision to build out an integrative genomics approach to looking at the interactions of organisms and environments. He also sees secondary metabolism analysis and research as a driver for novel technologies that can serve all JGI users.

    More

News & Publications
Home › News Releases
Page 10 of 26« First«...89101112...20...»Last »

January 27, 2016

Seagrass Genome Sequence Lends Insights to Salt Tolerance

eelgrass by Christoffer BostromFirst marine flowering plant genome provides clues on how crops could adapt to saline environments. To mitigate carbon emissions in the atmosphere, researchers have turned to sinks–reservoirs that accumulate and store carbon such as tropical rainforests, but also including a variety of terrestrial plants as well as oceans. However, another lesser known but very large… [Read More]

January 27, 2016

Uncovering Hidden Microbial Lineages from Hot Springs

Kryptonia Composite by Emiley Eloe-FadroshMetagenomics and single cell strategies help reveal a novel bacterial phylum. Although global microbial populations are orders of magnitude larger than nearly any other population in, on or around the planet, only a fraction has been identified thus far. The U.S. Department of Energy (DOE) is seeking to uncover the true extent of the planet’s… [Read More]

October 20, 2015

Building Off Known Genomes to Advance Systems and Ecosystems Biology

Christopher Francis of Stanford University is interested in the floodplains in the upper Colorado River Basin, which are generally nutrient-poor but abundant in iron sulfide minerals, leading to the descriptor "naturally reduced zones" (NRZs). There are concerns that NRZs are slow-release sources of uranium to the aquifer that could persist for hundreds of years. (Photo by Roy Kaltschmidt, Berkeley Lab)2016 Community Science Program proposals build upon DOE JGI-generated reference genomes. The U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science User Facility, has announced that 27 new projects have been selected for the 2016 Community Science Program (CSP). “These new CSP projects, selected through our external review process, exploit… [Read More]

August 4, 2015

Keeping Algae from Stressing Out

Study co-author Yuko Yoshinaga works with C. reinhardtii cells. (Roy Kaltschmidt, Berkeley Lab)Identifying pathways in algae that produce oil without killing them While most people might know some algae as “pond scum,” to the U.S. Department of Energy (DOE), they are tiny organisms that could provide a source of sustainable fuels. Like plants, they can convert light into energy-rich chemical compounds; unlike plants, they require less space… [Read More]

July 16, 2015

Unearthing Cornerstones in Root Microbiomes

cropped shot of soil bacterium on the root surface of an Arabidopsis plant courtesy of PNNLDefining core members of a microbial community for normal plant growth Like the tip of an iceberg, a plant sprouting from the soil barely hints at what lies beneath. At the nexus where roots and soil intersect are thriving microbial communities that play important roles in plant health and growth. Understanding how plant yields can… [Read More]

July 9, 2015

The MiSIng Piece Revealed: Classifying microbial species in the genomics era

cropped image of B mallei clique group by Neha VargheseThe rapid explosion in the throughput of DNA sequencing due to new technology platforms is fueling an increase in the number of sequenced microbial genomes and driving much greater availability of these data to the research community. Traditionally, identifying the microorganisms selected for sequencing is often decided on the basis of a single universal marker… [Read More]

June 25, 2015

Confirming Microbial Lineages Through Cultivation-Independent Means

Metagenome isolates from Great Boiling Spring were used to generate 'Atribacteria' (OP9) genomes. (Jeremy Dodsworth)Collaborative work culminates in evidence of a single candidate bacterial phylum. The number of microbes found on Earth has been compared to the number of stars in the Milky Way. Yet the proportion of those microbes that can actually be grown under laboratory conditions is so small it would be akin to those stars that… [Read More]

June 15, 2015

Automating Microbial Genome Sequence Decontamination

From left to right, several of the authors of the ProDeGe paper published in The ISME Journal: Nikos Kyrpides, Scott Clingenpeel, Kristin Tenessen, Tanja Woyke, Amrita Pati, and Evan Andersen.Single cell genomics and metagenomics are pioneering techniques that have helped researchers assess environmental microbial community structure and function. As projects applying these techniques scale up, however, researchers are hindered by the lack of a high-throughput process to review assembled genome sequences. Currently, sequence decontamination of the microbial genomes being uploaded to public databases is… [Read More]

April 1, 2015

Longer DNA Fragments Reveal Rare Species Diversity

April 2015 cover of Genome ResearchNew sequence assembly technologies help reconstruct environmental microbial communities. Many microbes cannot be cultivated in a laboratory setting, hindering attempts to understand Earth’s microbial diversity. Since microbes are heavily involved in, and critically important to environmental processes from nutrient recycling, to carbon processing, to the fertility of topsoils, to the health and growth of plants… [Read More]

March 4, 2015

Characterizing Permafrost Microbes in a Changing Climate

frozen peaty soil collapsing into a thermokarst bogIn the effort to curb climate change by reducing global greenhouse gas (GHG) emissions, thawing permafrost poses a critical challenge. These reservoirs of frozen organic matter embedded in Arctic soils are one of the major (~1.5 billion tons) stores of carbon on Earth. One of the abiding concerns regarding permafrost is that as global temperatures… [Read More]
Page 10 of 26« First«...89101112...20...»Last »

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2022 The Regents of the University of California