DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

News & Publications
Home › News Releases › The More the Merrier: Making the Case for Plant Pan-genomes

August 25, 2020

The More the Merrier: Making the Case for Plant Pan-genomes

Brachypodium model system traces polyploid genome evolution.

 

Brachypodium distachyon, the model species for temperate cereals and biofuel crop grasses with a growing pangenome of one hundred genomes. Spain: Huesca, Ibieca, San Miguel de Foces. (Photography credits: Pilar Catalán)

Brachypodium distachyon, the model species for temperate cereals and biofuel crop grasses with a growing pan-genome of one hundred genomes, in Spain: Huesca, Ibieca, San Miguel de Foces. (Pilar Catalán)

Flowering plants abide by the concept, “the more the merrier,” with respect to their genomes. In their base state, they are diploids with two genome copies, one from each parent. Having three or more genome copies from additional parents or duplication, also known as “polyploidy,” is common among flowering plants; at least once during their evolution, the genomes of flowering plants multiply. Over time, plants lose many genes after such events, returning their genomes to a diploid state while retaining multiple copies of some genes.

This polyploidization process is ongoing and many plants, including agricultural staples and candidate bioenergy feedstock crops, are recent polyploids. Crop breeders have harnessed polyploidy to increase fruit and flower size, and confer stress tolerance traits. Given the importance of polyploidy in plants, researchers have sought to learn the origins, evolution and development of plant polyploids. A multi-institutional team led by researchers at Spain’s Universidad de Zaragoza and the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility located at Lawrence Berkeley National Laboratory (Berkeley Lab), relied on a model grass system for answers. Their work recently appeared in Nature Communications.

The team studied Brachypodium hybridum, a polyploid resulting from the combination of the genomes from the diploids B. stacei and B. distachyon, a relative of the candidate bioenergy crop switchgrass and a JGI Flagship Plant. All three Brachypodium grasses have small genomes, short life cycles and can be easily transformed, traits that make them easy to work with bioinformatically and in the laboratory. “We are fortunate because the progenitor species of Brachypodium hybridum are still extant (whereas the diploid progenitors of other polyploid plants have gone extinct or are unknown),” noted Pilar Catalan of the Universidad de Zaragoza, one of the paper’s senior authors. “It offers us the possibility to explore genomically the whole complex of progenitors and descendant species and, consequently, the evolution of polyploidy.”

Evaluating Polyploid Genomes in a Pan-genomic Context

Plant images from the Vogel lab. Cytogenetic images from Hasterok et al. 2004, 2006 (Courtesy of John Vogel)

Plant images from the Vogel lab. Cytogenetic images from Hasterok et al. 2004, 2006 (Courtesy of John Vogel)

For the study, partly enabled by the JGI’s Community Science Program, the team generated reference genomes for B. hybridum and B. stacei, as well as multiple lower quality genome assemblies for all three grasses. With these datasets, researchers made a pan-genome containing four B. hybridum genomes and many B. distachyon genomes. This builds upon a previously made B. distachyon pan-genome.

A pan-genome is the nonredundant set of genes found in a species, but in this case, the team included two species in the pan-genome. Typically, pan-genomes are much larger than any individual genome highlighting the fact that the genetic information in a single reference genome is insufficient. “We really have to evaluate polyploid genomes in a pan-genomic context so we don’t overestimate the evolution that happened after polyploidization,” said John Vogel, head of the Plant Functional Genomics program at the JGI and a senior author on the paper. “The assumption that all the genes in a diploid reference genome were present in the actual diploid progenitor of the polyploid reference line is simply not true based on previous pan-genome studies. Thus, we must compare multiple polyploid genomes to the pan-genome to better estimate post-polyploidization evolution.”

One Polyploid Species, Two Subgenomes

Among the team’s findings is that the polyploid B. hybridum formed more than once, and these events took place a million years apart: the individual with a maternal B. distachyon parent (D plastotype) some 1.4 million years ago (Mya), while the S plastotype was a more recent event (0.14 Mya) with a maternal B. stacei parent. The analysis also revealed that these two B. hybridum types don’t interbreed. “Preliminary artificial crossing experiments between ancestral and recent B. hybridum accessions produced infertile F1 descendants (first offspring of the parents), posing the question if they correspond to the same recurrent speciation outcome or to different species,” added Catalan.

The Brachypodium distachyon-B. stacei-B. hybridum polyploid model complex. (Illustrations credits: Juan Luis Castillo)

The Brachypodium distachyon-B. stacei-B. hybridum polyploid model complex.
(Illustrations by Juan Luis Castillo)

Overall, Vogel noted, the results suggest that polyploid evolution is occurring slower than had been expected. “Although every case is probably going to be different, at least for B. hybridum it’s happening a lot slower than I had anticipated with only minor gene loss even after a million years.”

Reference genomes for B. distachyon, B. stacei and B. hybridum are all available on the JGI’s plant portal Phytozome v13.

Researchers from the following institutions were also involved in this work: Estación Experimental de Aula Dei (EEAD-CSIC) (Spain); Fundación ARAID (Spain); University of California, Berkeley; Gregor Mendel Institute of Molecular Plant Biology (Austria);

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben (Germany); Université d’Evry Val d’Essonne (UEVE) (France); Zhejiang University (China); Universidad de Zaragoza-Escuela Politécnica Superior de Huesca (Spain); Universidad Central de Venezuela (Venezuela); University of Silesia (Poland); Aberystwyth University (UK); HudsonAlpha Institute for Biotechnology; University of Massachusetts Amherst; and, Tomsk State University (Russia).

Publication: Gordon SP et al. Gradual polyploid genome evolution revealed by pan-genomic analysis of Brachypodium hybridum and its diploid progenitors. Nat Commun. 2020 July 29. doi: 10.1038/s41467-020-17302-5

 

Byline: Massie S. Ballon

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

You can move, but you can’t hide

Illustration of a magnifying glass identifying viruses and plasmids.

JGI announces second round of 2023 New Investigator awardees

From left to right: [above] Emma Bell, Mallory Choudoir, Sneha Couvillion, Tobin Hammer, Christina Hazard, Rachel Mackelprang, Brook Moyers, Mei, Ran,; [below] Benjamin Peterson, Dacheng Ren, Allison Rober, Neal Scott, Chikae Tatsumi, Vojtech Tlaskal, Fernando Torralbo, Luis Felipe Valdez-Nuñez

A Collaboration to Improve Plant Genome Annotations Across Species

A tiled collage of square photos of different plants - soybeans, and sorghum, for example.

From Berkeley to Binghamton: Tracking Strawberry Evolution

iPHoP: A Matchmaker for Phages and their Hosts

iPHoP image (Simon Roux)

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California