DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

    Artist rendering of genome standards being applied to deciphering the extensive diversity of viruses. (Illustration by Leah Pantea)
    Expanding Metagenomics to Capture Viral Diversity
    Along with highlighting the viruses in a given sample, metagenomics shed light on another key aspect of viruses in the environment — their sheer genetic diversity.

    More

    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    CSP New Investigators FY23 R1
    JGI Announces First Round of 2023 New Investigator Awardees
    Twice each year we look for novel research projects aligned with DOE missions and from PIs who have not led any previously-accepted proposals through the CSP New Investigator call.

    More

    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

News & Publications
Home › News Releases › Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet

October 5, 2020

Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet

Green millet (Setaria viridis) plant collected in the wild. (Courtesy of the Kellogg lab)

A green millet (Setaria viridis) plant along a highway in Illinois. (Courtesy of the Kellogg lab)

For years, Elizabeth (Toby) Kellogg and other researchers at the Danforth Plant Science Center (Danforth Center) drove up and down the highways of the continental United States, occasionally pulling over to the side of the road to collect small weedy plants and bring them back to the lab. The weedy grass was green millet (Setaria viridis), a small model grass with a short lifecycle that uses a carbon fixation process known as the C4 pathway, which particularly helps plants thrive in warm, arid environments. Corn and sugarcane are among the major high-yield C4 crops, as are the candidate biofuel feedstocks Miscanthus and switchgrass.

Innumerable road trips and hundreds of plants have resulted in a paper published October 5, 2020, in Nature Biotechnology. Kellogg and her colleagues, along with researchers at the HudsonAlpha Institute for Biotechnology and the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility located at Lawrence Berkeley National Laboratory (Berkeley Lab), generated genome sequences for nearly 600 green millet plants and released a very high quality reference S. viridis genome sequence. Analysis of these plant genome sequences also led researchers to identify a gene related to seed dispersal in wild populations for the first time.

“To our knowledge, nobody has ever discovered a dispersal gene that way,” said Kellogg, a senior author of the paper. “This paper is the first one to survey a huge amount of natural diversity and say, ‘Yeah, there are genes out there that affect this phenotype.’”

Results from A “Massive Amount” of Sequencing

Green millet (Setaria viridis) plant collected in the wild. (Courtesy of the Kellogg lab)

Green millet plants growing at the Danforth Center. (Bruton Stroube/ Donald Danforth Plant Science Center)

Seed dispersal is critical for plants in the wild, but it is an undesirable trait for domesticated crops because it leads to reduced harvest yields. Over thousands of years, farmers have selected for cereal plants without this shattering trait – referring to the moment when the cluster of seeds at the tip of each branch breaks apart so the seeds can disperse – so that the seeds remain atop the plant to be collected.

Association mapping led the team to identify a gene called Less Shattering 1 (SvLes1); gene editing studies led by co-first author Pu Huang confirmed that it was involved in shattering by turning it off. “It’s a new shattering gene variant identified in a natural population. Not very many of these shattering genes have been discovered that let a plant go all the way to seed but prevent the seeds from falling,” said JGI Plant Program head Jeremy Schmutz, who is also a HudsonAlpha Faculty Investigator. “This could be another mechanism to turn off shattering and domesticate crops.” How shattering occurs varies widely between crops, Kellogg added, and shattering genes may be specific to species or groups of species.

The genome data also revealed that green millet was introduced into the United States multiple times from Eurasia. The team also identified a gene associated with leaf angle, which determines how much sunlight leaves can get and in turn serves as a predictor of yield. The gene is an ortholog of known genes, “The gene has now been mapped back in maize as involved in leaf angle,” noted Schmutz. “It’s a nice example of de novo discovery and then mapping back to identify candidate genes.”

Every dot on this map represents the location of a green millet (Setaria viridis) plant collected by Danforth Center researchers. (Courtesy of the Kellogg lab)

Every dot on this map represents the location of a green millet (S. viridis) plant collected by Danforth Center researchers. (Courtesy of the Kellogg lab)

Through JGI’s Community Science Program, sequences of several hundred green millet plant genomes were generated, though the final analyses focused on 598 individuals. Schmutz and his team assembled and annotated the genomes at HudsonAlpha. Sujan Mamidi and Adam Healey, two of the co-first authors, led the data analyses and assembled the green millet “pan-genome” (a set of 51,000 genes that represent all the genes that are present in a given species).

“This is a great example of developing a large-scale genome infrastructure with a reasonably accessible system,” said Schmutz. “Building the pan-genome and accessions allow us to see presence/absence variation easily and to find genes missing in particular accessions, and to confirm phenotypes, which validate traits.”

“The number of lines sequenced is not trivial, and they were all assembled de novo, which let the team look at presence/absence of whole genes,” Kellogg agreed. “Getting that information is hard. There’s a good reason nobody’s done it; it’s a heck of a lot of work. I wouldn’t have done it without the contribution of Jeremy’s group. It’s just a massive amount of sequencing.”

A Resource for Many Applications

Kellogg noted that C4 crops have gotten a lot of interest because they’re very productive even in high heat while C3 crops have become less efficient at photosynthesis, a concern as extreme weather events become more frequent. “A big part of the Danforth Center’s mission is to feed the hungry and improve human health. So there’s a major question: how to turn a C3 crop into a C4 crop. There should be a master regulator but no one has found it,” Kellogg mused. “[The S. viridis genome] is a resource for many different applications. The JGI group has been wonderful to collaborate with, and this [project] wouldn’t have been possible without their involvement; it’s something we wouldn’t have even started.”

The reference genome of Setaria viridis is available on JGI’s plant portal Phytozome.

Researchers from the RIKEN Center for Sustainable Resource Science (Japan) and Chinese Academy of Agricultural Sciences (China) were also involved in this work.

Publication: Mamidi S et al. A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci. Nature Biotechnology. 2020 Oct 5. doi:10.1038/s41587-020-0681-2

 

Byline: Massie Santos Ballon

***

About The Donald Danforth Plant Science Center: Founded in 1998, the Donald Danforth Plant Science Center is a not-for-profit research institute with a mission to improve the human condition through plant science. Research, education and outreach aim to have impact at the nexus of food security and the environment, and position the St. Louis region as a world center for plant science. The Center’s work is funded through competitive grants from many sources, including the National Institutes of Health, U.S. Department of Energy, National Science Foundation, and the Bill & Melinda Gates Foundation. Follow us on Twitter at @DanforthCenter.

About HudsonAlpha: HudsonAlpha Institute for Biotechnology is a nonprofit institute dedicated to developing and applying scientific advances to health, agriculture, learning, and commercialization. Opened in 2008, HudsonAlpha’s vision is to leverage the synergy between discovery, education, medicine, and economic development in genomic sciences to improve the human condition around the globe. The HudsonAlpha biotechnology campus consists of 152 acres nestled within Cummings Research Park, the nation’s second largest research park. The state-of-the-art facilities co-locate nonprofit scientific researchers with entrepreneurs and educators. HudsonAlpha has become a national and international leader in genetics and genomics research and biotech education and fosters more than 40 diverse biotech companies on campus. To learn more about HudsonAlpha, visit hudsonalpha.org.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

iPHoP: A Matchmaker for Phages and their Hosts

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.

New Research Sheds Light on Diversity in the Deep Sea

A photo taken in the deep sea. Black clouds billow out of hydrothermal vents.

Sequencing Sphagnum Leads to Discovery of Sex Chromosomes

A photo of two sphagnum species: S. divinum (red) and S. angustifolium (green)]

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California