DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › Learning to Look

July 22, 2019

Learning to Look

Machine learning approach significantly expands inovirus diversity.

EM image of Pseudomonas phage Pf, an inovirus infecting Pseudomonas hosts. Inovirus capsids are long flexible filaments visible here after sample concentration and precipitation. (Courtesy of J. Driver and P. Secor, University of Montana)

To answer the question, “Where’s Waldo?” readers need to look for a number of distinguishing features. Several characters may be spotted with a striped scarf, striped hat, round-rimmed glasses, or a cane, but only Waldo will have all of these features.

As described July 22, 2019, in Nature Microbiology, a team led by scientists at the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility, developed an algorithm that a computer could use to conduct a similar type of search in microbial and metagenomic databases. In this case, the machine “learned” to identify a certain type of bacterial viruses or phages called inoviruses, which are filamentous viruses with small, single-stranded DNA genomes and a unique chronic infection cycle.

“We’re not sure why we systematically manage to miss them; maybe it’s due to the way we currently isolate and extract viruses,” said the study’s lead author Simon Roux, a JGI research scientist in the Environmental Genomics group.

Training the Search Tool

Inoviruses are stealth agents that can enter and exit through the cell membrane without lysing the bacterial host. They can also influence their host’s growth and pathogenicity, in turn affecting the microbe’s own eukaryote host. As their small genomes can be easily manipulated through genetic engineering, inoviruses are used for several biotechnological applications, most notably, phage display. The search tool Roux and his colleagues developed first worked on a reference dataset that included genome sequences known to be affiliated with the Inoviridae. “What we’re really doing is looking for a particular gene found in all inoviruses, and then checking the surrounding genes,” he said. “If these genes are similar in size and function to those in typical bacterial or archaeal genomes, the sequence is most likely not an inovirus. But if these nearby genes are both short and novel, then that’s a very good indicator that it is a genuine inovirus.”

After Roux manually curated the results and refined the algorithm, the search tool combed through more than 70,000 microbial and metagenome datasets, ultimately identifying more than 10,000 inovirus-like sequences compared to the 56 previously known inovirus genomes. “These genomes are so special, regular search methods don’t work,” said Roux. “The machine learning approach allows you to quickly scale up once you’ve found the right features that you can use to identify the inoviruses.”

Overhauling the Perception of Inovirus Diversity

The results revealed inoviruses are in every major microbial habitat—including soil, water, and humans—around the world. By the numbers, the new approach detected inoviruses in 3,609 (6 percent) of the 56,868 microbial genomes and 2,249 of the 6,412 (35 percent) metagenomes mined for this study. “We’re simply getting much better at seeing them, which means we can now study their biology much more meaningfully,” Roux noted of the result.

Detection of inoviruses across ecosystems. The map displays the location and type of samples from which new inovirus sequences were identified as part of the global metagenome search. (Simon Roux)

Detection of inoviruses across ecosystems. The map displays the location and type of samples from which new inovirus sequences were identified as part of the global metagenome search. (Simon Roux)

“It troubled me for a long time that we had only a handful of representatives of this virus group,” said virologist Mart Krupovic of the Institut Pasteur, one of the study co-authors and an expert on inoviruses. “The result of this hidden diversity of inoviruses now overhauls our perception of this virus group – from minor curiosities they become a prominent component of the prokaryotic virome associated with nearly all bacterial phyla across virtually every ecosystem.”

By significantly expanding the known diversity of these viruses, genomic analyses led the team to propose that the Inoviridae should be classified as an order of viruses, with six families. Additionally, the team uncovered a range of genetic diversity among inoviruses with more than 3,400 different proteins, many linked to key functions such as virion structure and extrusion, and DNA replication and integration. The researchers also learned how an inovirus’ strategy of integrating itself within a host can lead to beneficial or antagonistic interactions with other co-infecting phages and with the host’s CRISPR-Cas immunity systems.

Countering Co-Infections, Ensuring Host Survival

Many bacteria have CRISPR-Cas systems that incorporate short sequences from infecting viruses and phages to help the bacterial host resist foreign genetic elements. In some cases, Roux and his colleagues found that the inoviruses were being targeted by their hosts’ own CRISPR-Cas systems, termed “self-targeting,” and yet still survived. The persistence of these “self-targeting” inoviruses suggested they had found a way to deactivate the CRISPR-Cas systems, and led the researchers to predict the presence of anti-CRISPRs, recently discovered inhibitors of bacterial CRISPR-Cas systems that have no conserved structural motifs or domain architectures.

“Anti-CRISPRs are important from the standpoint of phage-bacterial coevolution and are also useful tools in CRISPR-Cas applications, but we are limited in our predictive methods to discover new anti-CRISPRs,” said Adair Borges, a graduate student in bacterial immunologist Joe Bondy-Denomy’s lab at the University of California, San Francisco. Both are co-authors on the study. “By finding a new anti-CRISPR locus, in an inovirus for example, we would be able to discover all the new anti-CRISPRs that are associated with that genetic neighborhood. So anti-CRISPR loci are powerful discovery tools, by finding even one new anti-CRISPR locus, you are unlocking many new anti-CRISPRs.”

Borges worked with Roux and found that the inoviruses don’t need to make their own anti-CRISPRs. Instead, she said, the inoviruses she studied “piggyback” off the anti-CRISPRs made by the co-infecting phages in the same host cell, relying on their shared desire to avoid CRISPR-Cas immunity. In addition, Borges also showed that inoviruses might prevent new phages from infecting a cell in which the inovirus has established itself through a process called superinfection exclusion, which is another way by which they can help their host survive.

“It is an exciting time to be studying filamentous phages!” said Krupovic. “We can now start inquiring into their impact on microbial communities in the environment and also those associated with humans.”

The work also used resources of the National Energy Research Scientific Computing Center, another DOE Office of Science user facility.

 

Publication: Roux S et al. Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth’s biomes. Nature Microbiology. 2019 July 22. doi: 10.1038/s41564-019-0510-x

Nature Microbiology Research Community “Behind the Paper” blog: Simon Roux on Expanding inovirus diversity: the rise of the small and inconspicuous.

 

Byline: Massie Santos Ballon

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Introducing New Members of the JGI User Executive Committee

incoming 2023 UEC members

JGI Contributes Nine to 2022 Highly Cited Researchers List

Nine headshots, one for each researcher, laid out beside a purple ribbon reading, "Home to Highly Cited Researchers 2022 Clarivate"

JGI announces first round of 2023 New Investigator awardees

Digital ID card with 10 headshots reads: Congratulations to our 2023 New Investigator recipients!

JGI at 25: Following Fungi that Pry Apart Plant Polymers

A brown goat with white horns looks at green hay

Exploring Possibilities: 2022 JGI-UC Merced Interns

2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)

JGI at 25: Using team science to build communities around data

  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California