DOE Joint Genome Institute

  • COVID-19
  • About
  • Phones
  • Contacts
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Products
    • Science Highlights
    • Scientists
    Maize can produce a cocktail of antibiotics with a handful of enzymes. (Sam Fentress, CC BY-SA 2.0)
    How Maize Makes An Antibiotic Cocktail
    Zealexins are produced in every corn variety and protect maize by fending off fungal and microbial infections using surprisingly few enzymes.

    More

    The genome of the common fiber vase or Thelephora terrestris was among those used in the study. (Francis Martin)
    From Competition to Cooperation
    By comparing 135 fungal sequenced genomes, researchers were able to carry out a broader analysis than had ever been done before to look at how saprotrophs have transitioned to the symbiotic lifestyle.

    More

    Miscanthus grasses. (Roy Kaltschmidt/Berkeley Lab)
    A Grass Model to Help Improve Giant Miscanthus
    The reference genome for M. sinensis, and the associated genomic tools, allows Miscanthus to both inform and benefit from breeding programs of related candidate bioenergy feedstock crops such as sugarcane and sorghum.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Poplar (Populus trichocarpa and P. deltoides) grow in the Advanced Plant Phenotyping Laboratory (APPL) at Oak Ridge National Laboratory in Tennessee. Poplar is an important biofuel feedstock, and Populus trichocarpa is the first tree species to have its genome sequenced — a feat accomplished by JGI. (Image courtesy of Oak Ridge National Laboratory, U.S. Dept. of Energy)
    Podcast: Xiaohan Yang on A Plantiful Future
    Building off plant genomics collaborations between the JGI and Oak Ridge National Laboratory, Xiaohan Yang envisions customizing plants for the benefit of human society.

    More:

    Expansin complex with cell wall in background. (Courtesy of Daniel Cosgrove)
    Synthesizing Microbial Expansins with Unusual Activities
    Expansin proteins from diverse microbes have potential uses in deconstructing lignocellulosic biomass for conversion to renewable biofuels, nanocellulosic fibers, and commodity biochemicals.

    Read more

    High oleic pennycress. (Courtesy of Ratan Chopra)
    Pennycress – A Solution for Global Food Security, Renewable Energy and Ecosystem Benefits
    Pennycress (Thlaspi arvense) is under development as a winter annual oilseed bioenergy crop. It could produce up to 3 billion gallons of seed oil annually while reducing soil erosion and fertilizer runoff.

    Read more

  • Data & Tools
    • IMG
    • Genome Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Artistic interpretation of CheckV assessing virus genome sequences from environmental samples. (Rendered by Zosia Rostomian​, Berkeley Lab)
    An Automated Tool for Assessing Virus Data Quality
    CheckV can be broadly utilized by the research community to gauge virus data quality and will help researchers to follow best practices and guidelines for providing the minimum amount of information for an uncultivated virus genome.

    More

    Unicellular algae in the Chlorella genus, magnified 1300x. (Andrei Savitsky)
    A One-Stop Shop for Analyzing Algal Genomes
    The PhycoCosm data portal is an interactive browser that allows algal scientists and enthusiasts to look deep into more than 100 algal genomes, compare them, and visualize supporting experimental data.

    More

    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Podcast: A Primer on Genome Mining
    In Natural Prodcast: the basics of genome mining, and how JGI researchers conducted it in IMG/ABC on thousands of metagenome-derived genomes for a Nature Biotechnology paper.

    Read more

  • User Programs
    • Calls for User Proposals
    • Special Initiatives & Programs
    • User Support
    • Submit a Proposal
    Scanning electron micrographs of diverse diatoms. (Credits: Diana Sarno, Marina Montresor, Nicole Poulsen, Gerhard Dieckmann)
    Learn About the Approved 2021 Large-Scale CSP Proposals
    A total of 27 proposals have been approved through JGI's annual Community Science Program (CSP) call. For the first time, 63 percent of the accepted proposals come from researchers who have not previously been a principal investigator on an approved JGI proposal.

    Read more

    MiddleGaylor Michael Beman UC Merced
    How to Successfully Apply for a CSP Proposal
    Reach out to JGI staff for feedback before submitting a proposal. Be sure to describe in detail what you will do with the data.

    Read more

    Click on the image or go here to watch the video "Enriching target populations for genomic analyses using HCR-FISH" from the journal Microbiome describing the research.
    How to Target a Microbial Needle within a Community Haystack
    Enabled by the JGI’s Emerging Technologies Opportunity Program, researchers have developed, tested and deployed a pipeline to first target cells from communities of uncultivated microbes, and then efficiently retrieve and characterize their genomes.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Publications
    • Scientific Posters
    • Newsletter
    • Logos and Templates
    • Photos
    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Uncovering Novel Genomes from Earth’s Microbiomes
    A public repository of 52,515 microbial draft genomes generated from environmental samples around the world, expanding the known diversity of bacteria and archaea by 44%, is now available .

    More

    Green millet (Setaria viridis) plant collected in the wild. (Courtesy of the Kellogg lab)
    Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet
    In Nature Biotechnology, a very high quality reference Setaria viridis genome was sequenced, and for the first time in wild populations, a gene related to seed dispersal was identified.

    More

    The Brachypodium distachyon-B. stacei-B. hybridum polyploid model complex. (Illustrations credits: Juan Luis Castillo)
    The More the Merrier: Making the Case for Plant Pan-genomes
    Crop breeders have harnessed polyploidy to increase fruit and flower size, and confer stress tolerance traits. Using a Brachypodium model system, researchers have sought to learn the origins, evolution and development of plant polyploids. The work recently appeared in Nature Communications.

    Read more

User Programs
Home › Featured Profiles › Steven Hallam, University of British Columbia

April 28, 2014

Steven Hallam, University of British Columbia

  • CIFAR Scholar and Associate Professor, University of British Columbia
  • Department of Microbiology & Immunology, Life Sciences Institute
Steven Hallam

Steven Hallam, CIFAR Scholar and Associate Professor, University of British Columbia, Department of Microbiology & Immunology, Life Sciences Institute

I have collaborated with the JGI since 2002 before the CSP program came online. These collaborations have spanned my postdoctoral years with Ed DeLong [now at MIT: http://cee.mit.edu/delong] and my time as an independent investigator at the University of British Columbia. In 2002, the JGI was doing several pilot projects to explore environmental sequencing that included acid mines, eel river basin sediments and marine sponges. I worked with Nik Putnam closely on the sediment and sponge projects with some coding support from Jarrod Chapman and Sam Pitluck. (Hallam, S. J., Putnam, N. Preston, C.M., Detter, J.C., Richardson, P. M., Rokhsar, D., and E. F. DeLong. 2004. Reverse methanogenesis: testing the hypothesis with environmental genomics, Science, 305: 1457-1462.  http://www.sciencemag.org/content/305/5689/1457.full)

Over the years I have worked on projects that explored the genomic potential of anaerobic methane oxidizing Archaea and the symbiotic thaumarchaeota Cenarchaeum symbiosum as well as more community based studies focused on microbial community structure and function in expanding marine oxygen minimum zones and long term soil productivity sites across north American ecozones. I have also participated in single-cell genomic studies exploring microbial dark matter from both metabolic reconstruction and technology development perspectives.

Understanding the ecological and biogeochemical roles played by microorganisms alone and in community is a fundamental research problem with important implications for modeling the earth system and developing new technologies for sustainable economic growth. This is not abstract science but empirical and object oriented exploration of nature with real world implications for human societies trying to make a balance living on a dynamic planet. My JGI projects have tended to focus on metabolic reconstruction of uncultivated microorganisms that play important roles in carbon, nitrogen and sulfur transformations in aquatic ecosystems. Several of these projects have resulted in foundational advances related to biochemical pathways mediating methane oxidation along continental margins, autotrophic carbon assimilation by marine thaumarchaeota (http://www.plosbiology.org/ and http://www.pnas.org/) and more recently coupled carbon, nitrogen and sulfur cycling in expanding marine oxygen minimum zones (OMZs).

The OMZ work highlights the promise and the power of monitoring microbial communities in natural and human engineered ecosystems as sensitive indicators of change. Indeed, dissolved oxygen concentration is a critical organizing principle in the ocean. As oxygen levels decline, energy is diverted away from plants and animals into microbial community metabolism. Over the past 50 years oxygen minimum zones have expanded due to climate change and increased waste run-off from our farms and cities. At present 8% of the ocean is considered oxygen-starved. In certain coastal areas extreme oxygen-starvation produces “dead zones” decimating marine fisheries and destroying food web structure. Although inhospitable to many plants and animals, oxygen minimum zones support thriving microbial communities.

OMZ research in my laboratory has focused on the northeast subarctic Pacific Ocean and Saanich Inlet as model ecosystems for understanding microbial community responses to OMZ expansion. Using DNA and RNA extracted directly from the environment, we observed that oxygen-starvation produces alternative niches that organize and direct microbial community metabolism. Changes in microbial community metabolism in turn control marine nutrient and energy recycling, including the production and consumption of the greenhouse gases carbon dioxide, methane and nitrous oxide.  We identified one specific group of microorganisms, called SUP05 related to gill symbionts of deep-sea clams and mussels that dominate the most oxygen-starved regions of the water column. SUP05 breathes-in nitrate and exhales nitrous oxide. This respiratory process is coupled to carbon dioxide fixation and the removal of toxic hydrogen sulphide. The presence of SUP05 in non-sulfidic oxygen minimum zones prompted the description of a cryptic sulphur cycle linking the metabolic activities of SUP05 with other microorganisms involved in nitrogen and sulphur cycling.

Thus, knowing how microorganisms interact with and respond to ocean oxygen starvation teaches us about the organizing principles that shape ocean food webs and define how these species work with each other and their environment in a time of climate change.

I have effectively grown up as scientist with support from the JGI. I have been exposed to cutting edge technologies and incredibly talented people that have pushed my research into unexpected and impactful places through the Community Science Program. There is no way that I could have reached this level of scientific engagement without the community sequencing program and collaborative interactions with JGI staff and the extended network of people that results from programmatic initiatives like the GEBA uncultivated project. The JGI is truly a unique human resource and an engine for innovation and discovery in genome science and systems biology.

###

Check out Steven presenting in TEDxRenfrewCollingwood in Vancouver, British Columbia on October 25th, 2014.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Featured Profiles

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Podcasts
  • CSP Plans
  • Featured Profiles

Related Content:

Kelly Wrighton, Colorado State University

Kelly Wrighton JGI value cropped screencap

Tobias Erb, Max Planck Institute for Terrestrial Microbiology

Tobias Erb, MPI Marburg (Courtesy of Tobias Erb)

Colleen Hansel, Woods Hole Oceanographic Institute

Colleen Hansel, fungal collaborator at WHOI

J. Chris Pires, University of Missouri

J. Chris Pires, University of Missouri

Cat Adams, University of California, Berkeley

Cat Adams, UC Berkeley

C. Titus Brown, University of California, Davis

C. TItus Brown, UC Davis on collaborating with the JGI
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Emergency Info
  • Accessibility / Section 508 Statement
  • RSS feed
  • Flickr
  • LinkedIn
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2021 The Regents of the University of California