DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

User Programs
Home › Featured Profiles › Tobias Erb, Max Planck Institute for Terrestrial Microbiology

January 31, 2018

Tobias Erb, Max Planck Institute for Terrestrial Microbiology

Tobias Erb, MPI Marburg (Courtesy of Tobias Erb)

How long have you collaborated with the JGI? 

We have been collaborating with JGI since 2015.

We are supported by the JGI DNA Synthesis program. The DNA Synthesis team at JGI provides us with synthetic genes, which we then test in our laboratory for their function. Our project aims at characterizing a new class of highly efficient CO2-converting biocatalysts, so called enoyl-CoA reductases/carboxylases. These enzymes convert CO2 up to 20 times faster than their CO2-converting counterparts in plants. We have used these turbo-enzymes to build a synthetic pathway for CO2 fixation, the CETCH cycle. (Click here to learn more about the CETCH collaboration reported in Science.) This artificial pathway consists of 17 different enzymes from nine different organisms and converts atmospheric carbon dioxide into glyoxylic acid in vitro. It is almost like an artificial photosynthesis in the reaction tube. Having demonstrated that we can assemble artificial pathways from scratch in vitro, our next challenge is now to transplant this artificial metabolism into living cells, which will be again supported by the JGI.

Why is this research important?

Our research is important, because it will allow us on the long run to harness atmospheric CO2 as a sustainable carbon source. Our ultimate goal is to realize a synthetic metabolism that is more efficient in converting CO2 into biomass and/or chemical building blocks than any naturally evolved process (e.g., photosynthetic CO2 fixation in plants, algae and bacteria).

What do you value about JGI’s contributions?

Click here to watch Tobi Erb's keynote from the 2017 JGI Genomics of Energy & Environment Meeting

Click here to watch Tobi Erb’s keynote from the 2017 JGI Genomics of Energy & Environment Meeting

The JGI has been crucial for our research because it has provided the scientific community with a tremendous amount of gene sequences over the last couple of years. These gene sequences have become a true treasure grove for synthetic biologists like us. We search this large DNA sequence space to identify enzymes that we can use build our artificial CO2-fixation pathways. It is very exciting to see that the JGI has launched programs that will allow us to identify and characterize the function of genes in high throughput. This will speed up the process of finding new reactions that we can make use of. At the same time the “gene to function” approach will be fundamentally important to understand the role of all these new reactions in the biosphere.

We appreciate the direct interaction between the scientists at JGI and our laboratory. There is a constant flow of ideas, which is very stimulating and drives our research forward. We hope to be able to develop and test new strategies together with the JGI scientists that allow us to harness the power of genes for synthetic biology.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Featured Profiles

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Kelly Wrighton, Colorado State University

Kelly Wrighton JGI value cropped screencap

Colleen Hansel, Woods Hole Oceanographic Institute

Colleen Hansel, fungal collaborator at WHOI

J. Chris Pires, University of Missouri

J. Chris Pires, University of Missouri

Cat Adams, University of California, Berkeley

Cat Adams, UC Berkeley

C. Titus Brown, University of California, Davis

C. TItus Brown, UC Davis on collaborating with the JGI

Rod Wing, Arizona Genomics Institute

Rod Wing on his decade of collaborations with the JGI
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California