DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

    Artist rendering of genome standards being applied to deciphering the extensive diversity of viruses. (Illustration by Leah Pantea)
    Expanding Metagenomics to Capture Viral Diversity
    Along with highlighting the viruses in a given sample, metagenomics shed light on another key aspect of viruses in the environment — their sheer genetic diversity.

    More

    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    CSP New Investigators FY23 R1
    JGI Announces First Round of 2023 New Investigator Awardees
    Twice each year we look for novel research projects aligned with DOE missions and from PIs who have not led any previously-accepted proposals through the CSP New Investigator call.

    More

    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

Our Science
Home › Science Highlights › Plotting a Model for Virus-Host Warfare Deep Below Ground

September 22, 2021

Plotting a Model for Virus-Host Warfare Deep Below Ground

Visualizing a novel, candidate viral genome found in the deep subsurface ecosystem.

Image of biofilm with both Altiarchaea (blue) and viruses (red). (Victoria Turzynksi and Lea Griesdorn)

Image of biofilm with both Altiarchaea (blue) and viruses (red). (Victoria Turzynksi and Lea Griesdorn)

The Science

Altiarchaea are carbon-fixing microbes and targets of multiple viruses in Earth’s deep subsurface. They are abundant representatives of deep subsurface ecosystems. A team of researchers described how the viruses repeatedly attempted to infect and destroy the host archaea – and how the microbes resist. The battle waged below the Earth’s surface is reconstructed by combining a study of microbial communities (metagenomics) and a chemical labelling approach.

The Impact

Altiarchaea are abundant and dominant populations in oxygen-poor environments without oxygen deep below ground. These archaea fix carbon and nitrogen, but the viruses that infect Altiarchaea cause the cells to burst. This action triggers subsurface carbon cycling, releasing fresh organic carbon which can serve as a food source for other microbes into the environment.

Summary

In J. R. R. Tolkien’s “The Lord of the Rings,” the Hornburg fortress had withstood all attacks – until the Battle of Helm’s Deep. The army of the dark wizard Saruman repeatedly tried to break through, finally resorting to explosives to succeed.

Altiarchaea, like the Hornburg, have a history of countering multiple attempts at virus infections. Their genomes include short DNA sequences that code for CRISPR systems, which help bacteria resist foreign genetic elements by incorporating short sequences from infecting viruses and phages. In these sequences are virus fragments called spacers, that indicate repelled attempts to infect and lyse the microbial cells.

This demonstration of the virus-host arms race in uncultivated yet abundant subsurface organisms was recently reported in Nature Communications. The work was co-led by Victoria Turzynski in Alexander Probst’s lab at the University of Duisburg-Essen and included researchers at the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility located at Lawrence Berkeley National Laboratory (Berkeley Lab).

To learn more about how microbial populations respond to virus infections, researchers are using Altiarchaea as a model system to study virus-host interactions. Approximately 150 archaeal viruses had been previously identified. The JGI researchers surveyed publicly available data in the JGI’s IMG/M database, information the Probst lab used to search for and find 13 additional predicted viral genomes. The team dubbed these viruses Altivir, finding them in three of the four subsurface ecosystems known to host Altiarchaea.

The team then tracked how Altiarchaea build immunity to viruses. To do so, they compared samples collected from an aquifer in 2012 and 2018 against a biofilm sample collected in 2018. They looked for and found CRISPR spacer sequences in the samples that corresponded to eight separate groups of viruses.

To visualize one particular viral genome in action, they utilized a targeted technique called virusFISH. Using fluorescently tagged probes, the team was able to visualize the behavior of a particular candidate virus under a microscope. The viruses were adsorbed by the cells, which then burst, spreading the virions out and moving the carbon within the microbial community. These findings also suggest that lytic viruses are more common in deep biosphere microbial communities than had been thought. Lysogenic viruses, which prefer to infect the host cell and then get passively replicated with the host DNA, have long been considered to be more abundant in these environments.

Contacts:

BER Contact
Ramana Madupu, Ph.D.
Program Manager
Biological Systems Sciences Division
Office of Biological and Environmental Research
Office of Science
US Department of Energy
Ramana.Madupu@science.doe.gov

PI Contact
Alexander Probst
University of Duisburg-Essen
alexander.probst@uni-due.de

Funding:

This work received funding by the Alfred P. Sloan foundation (grant number G-2017-9955), the Ministry of Culture and Science of North Rhine-Westphalia (Nachwuchs-gruppe “Dr. Alexander Probst”), and the NOVAC project of the German Science Foundation (grant number DFG PR1603/2-1). The authors acknowledge sampling logistics provided by the University of Regensburg, i.e., by Harald Huber and Sebastien Ferreira-Cerca, and sequencing of MSI metagenomes within the Census of Deep Life Sequencing call 2018, phase 14 project “Development of novel archaeal viruses and the corresponding CRISPR arrays of a highly abundant carbon fixer in Earth’s crust”. The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under Contract No. DE-AC02-05CH11231.

Publication:

  • Rahlff J and Turzynski V et al. Lytic archaeal viruses infect abundant primary producers in Earth’s crust. Nature Communications. 2021 July 30. doi:10.1038/s41467-021-24803-4

Related Links:

  • University of Duisburg-Essen Release: A Food Chain in the Dark
  • JGI Release: Tracking Microbial Diversity Through the Terrestrial Subsurface
  • JGI Release: Boldly Illuminating Biology’s “Dark Matter“
  • JGI Highlight: Metagenomics Leads to New CRISPR-Cas Systems
  • JGI Highlight: Mining Metagenomes for Cas Proteins

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases, Science Highlights Tagged With: 2022-progress-sci-highlight

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

iPHoP: A Matchmaker for Phages and their Hosts

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.

New Research Sheds Light on Diversity in the Deep Sea

A photo taken in the deep sea. Black clouds billow out of hydrothermal vents.

Sequencing Sphagnum Leads to Discovery of Sex Chromosomes

A photo of two sphagnum species: S. divinum (red) and S. angustifolium (green)]

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California