DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

News & Publications
Home › News Releases › Boldly Illuminating Biology’s “Dark Matter”

July 14, 2013

Boldly Illuminating Biology’s “Dark Matter”

Photo: There are more microbes in, on and around the Earth than there are stars in the sky, and we only know about a small fraction of the microbial diversity around us. In an effort to learn more about the "microbial dark matter," researchers are sequencing and analyzing samples collected from around the world. (Composition by Zosia Rostomian, Berkeley Lab)

Photo: There are more microbes in, on and around the Earth than there are stars in the sky, and we only know about a small fraction of the microbial diversity around us. In an effort to learn more about the “microbial dark matter,” researchers are sequencing and analyzing samples collected from around the world. (Composition by Zosia Rostomian, Berkeley Lab)

Is space really the final frontier, or are the greatest mysteries closer to home?  In cosmology, dark matter is said to account for the majority of mass in the universe, however its presence is inferred by indirect effects rather than detected through telescopes. The biological equivalent is “microbial dark matter,” that pervasive yet practically invisible infrastructure of life on the planet, which can have profound influences on the most significant environmental processes from plant growth and health, to nutrient cycles in terrestrial and marine environments, the global carbon cycle, and possibly even climate processes. By employing next generation DNA sequencing of genomes isolated from single cells, great strides are being made in the monumental task of systematically bringing to light and filling in uncharted branches in the bacterial and archaeal tree of life.  In an international collaboration led by the U.S. Department of Energy Joint Genome Institute (DOE JGI), the most recent findings from exploring microbial dark matter were published online July 14, 2013 in the journal Nature.

“Instead of wondering through the starkness of space, this achievement is more like the 21st Century equivalent of Lewis and Clark’s expedition to open the American West,” said Eddy Rubin, DOE JGI Director.  “This is a powerful example of how the DOE JGI pioneers discovery, in that we can take a high throughput approach to isolating and characterizing single genomes from complex environmental samples of millions of cells, to provide a profound leap of understanding the microbial evolution on our planet.  This is really the next great frontier.”

This microbial dark matter campaign targeted uncultivated microbial cells from nine diverse habitats: Sakinaw Lake in British Columbia; the Etoliko Lagoon of western Greece; a sludge reactor in Mexico; the Gulf of Maine; off the north coast of Oahu, Hawaii, the Tropical Gyre in the south Atlantic; the East Pacific Rise; the Homestake Mine in South Dakota; and the Great Boiling Spring in Nevada.  From these samples, the team laser-sorted 9,000 cells, from which they were able to reassemble and identify 201 distinct genomes, which then could be aligned to 28 major previously uncharted branches of the tree of life.

Photo: Crab Spa is a diffuse-flow hydrothermal vent site on the East Pacific Rise and one of the nine sampling sites for this study. (Photo courtesy of Stefan Sievert, Woods Hole Oceanographic Institution)

Photo: Crab Spa is a diffuse-flow hydrothermal vent site on the East Pacific Rise and one of the nine sampling sites for this study. (Photo courtesy of Stefan Sievert, Woods Hole Oceanographic Institution)

“Microbes are the most abundant and diverse forms of life on Earth,” said Tanja Woyke, DOE JGI Microbial Program Head and senior author on the Nature publication.  “They occupy every conceivable environmental niche from the extreme depths of the oceans to the driest of deserts.  However, our knowledge about their habits and potential benefits has been hindered by the fact that the vast majority of these have not yet been cultivated in the laboratory.  So we have only recently become aware of their roles in various ecosystems through cultivation-independent methods, such as metagenomics and single-cell genomics.  What we are now discovering are unexpected metabolic features that extend our understanding of biology and challenge established boundaries between the domains of life.”

To get around the difficulty of growing most microbes in the lab, recent efforts have focused on conducting surveys based on sequencing marker or 16S ribosomal RNA genes that are conserved across microbial lineages because of their essential role as “housekeeping” genes—critical for the organism’s survival.  Genome sequencing of the rest of the genomes of most of these lineages is however proceeding much more slowly. “Microbial genome representation in the databases is quite skewed,” said Chris Rinke, DOE JGI postdoctoral fellow and first author of the study.  “More than three-quarters of all sequenced genomes fall into three taxonomic groups or phyla but there are over 60 phyla we know of.”  For the majority of them, however, there are no cultivated members available.

“Based on 16S surveys we know they’re out there, but we don’t know much about them—that’s why we call them microbial dark matter,” Woyke added. “Using modern single-cell techniques allowed us to access the genetic make-up for some of them, even without growing them in the lab.”

In this effort to “seek out new life,” the team’s findings fell into three main areas.  The first was the discovery of unexpected metabolic features.  They observed certain traits in Archaea that previously only were seen in Bacteria and vice-versa.  One such trait involves an enzyme that bacteria commonly use for creating space within their protective cell wall, which is needed so the cell can, for example, expand during cell division.  As it rather generically cleaves the protective bacterial cell envelope, it needs to be very tightly regulated. For the first time, a group of Archaea was found to encode this potent enzyme and the authors hypothesize that Archaea may deploy it as a defense mechanism against attacking Bacteria.

Photo: Study first author Chris Rinke shows off the DOE JGI’s single-cell genomics capabilities during the annual Genomics of Energy & Environment Meeting. (Roy Kaltschmidt, Berkeley Lab)

Photo: Study first author Chris Rinke shows off the DOE JGI’s single-cell genomics capabilities during the annual Genomics of Energy & Environment Meeting. (Roy Kaltschmidt, Berkeley Lab)

The second contribution arising from the work was the correct reassignment, or binning, of data of some 340 million DNA fragments from other habitats to the proper lineage.  This course correction provides insights into how organisms function in the context of a particular ecosystem as well as a much improved and more accurate understanding of the associations of newly discovered genes with resident life forms.

The third finding was the resolution of relationships within and between microbial phyla—the taxonomic ranking between domain and class—which led the team to propose two new superphyla, which are highly stable associations between phyla.  The 201 genomes provided solid reference points, anchors for phylogeny—the lineage history of organisms as they change over time. “Our single-cell genomes gave us a glimpse into the evolutionary relationships between uncultivated organisms – insights that extend beyond the single locus resolution of the 16S rRNA tree and are essential for studying bacterial and archaeal diversity and evolution,” Woyke said.  “It’s a bit like looking at a family tree to figure out who your sisters and brothers are.  Here we did this for groups of organisms for which we solely have fragments of genetic information.  We interpreted millions of these bits of genetic information like distant stars in the night sky, trying to align them into recognizable constellations. At first, we didn’t know what they should look like, but we could estimate their relationship to each other, not spatially, but over evolutionary time.” Woyke and her colleagues are pursuing a more accurate characterization of these relationships so that they can better predict metabolic properties and other useful traits that can be expressed by different groups of microbes.

Phil Hugenholtz, Director of the Australian Centre for Ecogenomics at The University of Queensland, a former DOE JGI researcher, and another one of the paper’s authors reinforced the motivation for taking on this expedition of sorts.  “For almost 20 years now we have been astonished by how little there is known about massive regions of the tree of life. This project is the first systematic effort to address this enormous knowledge gap. One of the most significant contributions is that based on these data, we provided names for many of these lineages which, like most star systems, were just numbered previously. For me, taxonomic assignment is important as it welcomes in strangers and makes them part of the family.  Yet this is just a start.  We are talking about probably millions of microbial species that remain to be described,” Hugenholtz said.

Cosmologists have only mapped half of one percent of the observable universe and the path ahead in environmental genomics is similarly daunting.  “There is still a staggering amount of diversity to explore,” Woyke said.  “To try to capture 50 percent of just the currently known phylogenetic diversity, we would have to sequence 20,000 more genomes, and these would have to be selected based on being members of underrepresented branches on the tree.  And, to be sure, these are only what are known to exist.”

The Nature publication “Insights into the phylogeny and coding potential of microbial dark matter” builds upon a DOE JGI pilot project, the Genomic Encyclopedia of Bacteria and Archaea (GEBA: and closely articulates with other international efforts such as the Microbial Earth Project which aims to generate a comprehensive genome catalog of all archaeal and bacterial type strains (http://www.microbial-earth.org), and the Earth Microbiome Project (http://www.earthmicrobiome.org).  More information about GEBA-MDM is available at http://genome.jgi.doe.gov/MDM/.

Joining the DOE JGI in authorship on the MDM paper are researchers from Bielefeld University, Germany, the University of California, Davis, the University of Technology Sydney, the Bigelow Laboratory for Ocean Sciences, University of British Columbia, the University of Nevada, Las Vegas, the University of Western Greece, Woods Hole Oceanographic Institution, University of Illinois at Urbana-Champaign, and the Australian Centre for Ecogenomics of the University of Queensland, Australia.

Publication:

Rinke C et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 499, 431–437 (2013). https://doi.org/10.1038/nature12352

Relevant Links:

  • University of Illinois news release: http://engineering.illinois.edu/news/2013/07/25/genome-sequencing-work-illuminates-microbial-dark-matter

 

 

 

Byline: David Gilbert

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

You can move, but you can’t hide

Illustration of a magnifying glass identifying viruses and plasmids.

JGI announces second round of 2023 New Investigator awardees

From left to right: [above] Emma Bell, Mallory Choudoir, Sneha Couvillion, Tobin Hammer, Christina Hazard, Rachel Mackelprang, Brook Moyers, Mei, Ran,; [below] Benjamin Peterson, Dacheng Ren, Allison Rober, Neal Scott, Chikae Tatsumi, Vojtech Tlaskal, Fernando Torralbo, Luis Felipe Valdez-Nuñez

A Collaboration to Improve Plant Genome Annotations Across Species

A tiled collage of square photos of different plants - soybeans, and sorghum, for example.

From Berkeley to Binghamton: Tracking Strawberry Evolution

iPHoP: A Matchmaker for Phages and their Hosts

iPHoP image (Simon Roux)

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California