DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

News & Publications
Home › News Releases › Tracking Microbial Diversity Through the Terrestrial Subsurface

January 29, 2018

Tracking Microbial Diversity Through the Terrestrial Subsurface

Metabolic functions of microbial communities vary during a geyser eruption.

Deep underground, the earth beneath our feet is teeming with microbial life, the majority of which has yet to be characterized. Cut off from sunlight, these enigmatic organisms must obtain life-sustaining energy and carbon, which all living cells need, through other means.

A pressing question in subsurface microbiology is how these organisms, and their capacities for carbon, nitrogen and sulfur cycling, are distributed along vertical transects underground. In marine or freshwater aquatic systems, sampling microbial communities along depth gradients is fairly straightforward. But for the terrestrial subsurface, it’s difficult to obtain samples without contamination from drilling fluids or equipment.

Crystal Geyer during its "major eruption" period, where sufficient discharge is produced to cause overland flow to the Green River. (Cathy Ryan)

Crystal Geyser during its “major eruption” period, where sufficient discharge is produced to cause overland flow to the Green River. (Cathy Ryan)

In collaboration with a team led by longtime collaborator Jill Banfield of the University of California, Berkeley and Cathy Ryan of the University of Calgary in Canada, researchers at the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility, investigated samples collected at Crystal Geyser over one of the Utah geyser’s complex, five-day eruption cycles. Genome-resolved metagenomics, single-cell genomics, and geochemical analyses were integrated to show that samples taken during each phase contain microbial communities that are distinctive in terms of both composition and metabolic function. The results were reported January 29, 2018 in Nature Microbiology.

Banfield noted that the key achievement, in her view, is that cultivation-independent genomic methods directly linked highly novel groups of organisms to their sources below ground. This was possible due to the unprecedented combination of genomics methods with geochemistry and hydrological information. She also noted that it is important that major methods in microbial ecology, genome-resolved metagenomics and single cell genomics, were applied to the same samples so that these key methods could be compared.

Located in Paradox Basin, Utah, Crystal Geyser is a CO2-driven, cold-water geyser fed by a series of underlying aquifers separated by layers of shale and mudstone. Its five-day eruption cycle has three phases—minor eruptions, major eruptions, and recovery. In each eruption phase, the microbial communities sampled were sourced from groundwater at different depth intervals.

“For microbiology and geochemistry, it’s a really cool system because through its cycle the geyser feeds off these different aquifers and through these eruptions you can get access to the stratified system and the microbes that come up,” said JGI Microbial Program head Tanja Woyke.

Investigating the Deep Terrestrial Subsurface

Prior work by Banfield’s group hinted at the enormous phylogenetic diversity of previously unknown bacteria and archaea in this system, including deeply branching organisms of the Candidate Phyla Radiation (CPR) and the DPANN superphylum of extremophile archaea named for the first five groups discovered: Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaea. 

“Crystal Geyser provides a unique setting in which to investigate the subsurface, and combining our hydrogeochemical and microbiological datasets led to some fascinating insights about what’s going on down there,” said Bethany Ladd, the study’s co-first author and Ryan’s former graduate student.

“Ecosystems in the deep terrestrial subsurface represent the final frontier in the exploration of the diversity of life on our planet. Little is known about how these ecosystems are structured and how organisms in these environments make their living without sunlight,” said study co-first author Alexander Probst, a former postdoctoral researcher in Banfield’s lab who is now at the University of Duisburg-Essen in Germany. 

In the current study, genomes were reconstructed for 505 different bacterial and archaeal organisms from 104 different phylum-level lineages, including nine potentially novel phyla. Approximately 57 percent of the organisms were significantly enriched in a specific phase of the geyser’s eruption cycle, and thus could be sourced to a particular groundwater depth interval.

The shallow groundwater community was comprised primarily of one Sulfurimonas species, with a handful of other bacteria and a few archaea. The majority of the microbes in the intermediate depths and associated with the geyser itself belonged to the CPR, but the most abundant was a member of Gallionellaceae. And the deepest groundwater had the greatest concentration of DPANN archaea and Candidatus “Altiarchaeum,” a remarkable archaeon with miniature grappling hooks over its cell surface.

How these huge networks function together

Many of these subsurface-dwelling microbes are presumed to be symbiotic, the idea being that the dearth of resources available from the environment means that they have to rely more on one another to survive. Organisms that are able to generate energy through chemical reactions (such as hydrogen or iron oxidation) and then use that energy to build up carbon are considered “primary producers” that sustain the other bacteria and archaea in their communities.

Looking down the geyser wellhead (which was an oil well whose drilling was abandoned when it started geysering in 1937) during a quiet period between minor eruptions. (Cathy Ryan)

Looking down the geyser wellhead (which was an oil well whose drilling was abandoned when it started geysering in 1937) during a quiet period between minor eruptions. (Cathy Ryan)

“It was both an honor and a pleasure to work with the Berkeley team over long days and long nights in a very special part of the world,” noted University of Calgary’s Ryan, whose graduate student Bethany Ladd was co-first author on the study.

Banfield’s group also previously reported that organisms in the Crystal Geyser system employ three different carbon fixation mechanisms. In the current study, they associated the mechanism with the highest energy requirement with the shallow groundwater community, while the mechanism with the lowest energy requirement was associated with the deep groundwater community.

Moreover, noted Probst, the analysis identified genomes of hundreds of putative symbiotic organisms, including a potential symbiont of one the most abundant organisms in these subsurface fluids, an archaeon that binds CO2 in the subsurface and converts it to organic matter.

“Now that we have these kinds of big datasets we can start trying to disentangle how these huge networks function together,” Woyke said.

Additional JGI researchers who contributed to the project include: Jessica Jarett, a postdoctoral fellow in Woyke’s lab, who helped generate and analyze single cell genomes; Rex Malmstrom, a research scientist/engineer, who assisted in the generation of single cell genomes; and Christian Sieber, a former postdoctoral fellow co-appointed at UC Berkeley, provided software.

Alexander Probst was supported by the German Science Foundation and by Lawrence Berkeley National Laboratory’s Sustainable Systems Scientific Focus Area funded by the US Department of Energy, Office of Science. Work at UC Berkeley was funded by the Sloan Foundation “Deep Life” grant. Funding for hydrogeological and geochemical analyses was provided by a Natural Sciences and Engineering Research Council of Canada Discovery Grant to Cathy Ryan.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

You can move, but you can’t hide

Illustration of a magnifying glass identifying viruses and plasmids.

JGI announces second round of 2023 New Investigator awardees

From left to right: [above] Emma Bell, Mallory Choudoir, Sneha Couvillion, Tobin Hammer, Christina Hazard, Rachel Mackelprang, Brook Moyers, Mei, Ran,; [below] Benjamin Peterson, Dacheng Ren, Allison Rober, Neal Scott, Chikae Tatsumi, Vojtech Tlaskal, Fernando Torralbo, Luis Felipe Valdez-Nuñez

A Collaboration to Improve Plant Genome Annotations Across Species

A tiled collage of square photos of different plants - soybeans, and sorghum, for example.

From Berkeley to Binghamton: Tracking Strawberry Evolution

iPHoP: A Matchmaker for Phages and their Hosts

iPHoP image (Simon Roux)

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California