DOE Joint Genome Institute

  • About Us
  • Phone Book
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Products
    • Science Highlights
    • Scientists
    ear the town of Rifle, Colorado, lies the primary field site for Phase I of the Subsurface Systems Scientific Focus Area 2.0 (SFA 2.0, sponsored by the DOE Office of Biological and Environmental Research—BER).
    Waiting to Respire
    UC Berkeley and JGI researchers joined forces and data sets to describe bacterial genomes for related (“sibling”) lineages that diverged from the bacterial tree before Cyanobacteria and its contemporaries. The information was then used to predict the metabolic strategies applied by a common ancestor to all five lineages.

    Read more

    Field researchers studying drought responses in Panicum hallii at the UT Austin Brackenridge Field Lab. (David Gilbert)
    A Model System for Perennial Grasses
    The DOE supports research programs for developing methods for converting plant biomass into sustainable fuels for cars and jets. By studying a close relative model species like Panicum hallii, researchers can develop crop improvement techniques that could be applied to the candidate bioenergy feedstock switchgrass.

    Read more

    At high temperature, S. paradoxus cells die in the act of cell division, as seen by the dyads with cell bodies shriveled away from the outer cell wall. (Images by Carly Weiss, courtesy of the Brem Lab)
    Mapping Heat Resistance in Yeasts
    In a proof-of-concept study, researchers demonstrated that a new genetic mapping strategy called RH-Seq can identify genes that promote heat resistance in the yeast Saccharomyces cerevisiae, allowing this species to grow better than its closest relative S. paradoxus at high temperatures.

    Read more

  • Our Projects
    • Search JGI Project List
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Jorge Rodrigues is interested in the biological causes of methane flux variation in the Amazon rainforest. (Courtesy of Jorge Rodrigues)
    Methane Flux in the Amazon
    Wetlands are the single largest global source of atmospheric methane. This project aims to integrate microbial and tree genetic characteristics to measure and understand methane emissions at the heart of the Amazon rainforest.

    Read more

    Vampirovibrio chlorellavorus in yellow on green host. (Courtesy of Judith Brown)
    Infections and Host-Pathogen Interactions of Chlorella
    The non-photosynthetic, predatory cyanobacterium Vampirovibrio chlorellavorus is a globally important obligate pathogen of Chlorella species/strains, which are of interest as biofuel feedstocks.

    Read more

    Morphological diversity of Sordariales growing in the lab. Pierre Gladieux's proposal explores functional diversity in Neurospora and its relatives. (Pierre Gladieux, INRA Montpellier)
    Insights into Functional Diversity in Neurospora
    This proposal investigates the genetic bases of fungal thermophily, biomass-degradation, and fungal-bacterial interactions in Sordariales, an order of biomass-degrading fungi frequently encountered in compost and encompassing one of the few groups of thermophilic fungi.

    Read more

  • Data & Tools
    • IMG
    • Genome Portal
    • MycoCosm
    • Phytozome
    • GOLD
    Click on the image above or click here (https://youtu.be/iSEEw4Vs_B4) to watch a CRISPR Whiteboard Lesson from the Innovative Genomics Institute, this one focuses on the PAM sequence.
    Mining IMG/M for CRISPR-Associated Proteins
    Researchers report the discovery of miniature CRISPR-associated proteins that can target single-stranded DNA. The discovery was made possible by mining the datasets in the Integrated Microbial Genomes and Microbiomes (IMG/M) suite of tools managed by the JGI. The sequences were then biochemically characterized by a team led by Jennifer Doudna’s group at UC Berkeley.

    Read more

    The Angelo Coast Range Reserve, from which soil samples were taken, protects thousands of acres of the upper watershed of South Fork of the Eel River (shown here) in Mendocino County. (Akos Kokai via Flickr, CC BY 2.0 https://www.flickr.com/photos/on_earth/17307333828/)
    DAS Tool for Genome Reconstruction from Metagenomes
    Through the JGI’s Emerging Technologies Opportunity Program (ETOP), researchers have developed and improved upon a tool that combines existing DNA sequence binning algorithms, allowing them to reconstruct more near-complete genomes from soil metagenomes compared to other methods. The work was published in Nature Microbiology.

    Read more

    DOE JGI BOOST logo
    New Software Tools Streamline DNA Sequence Design-and-Build Process
    Researchers from the U.S. Department of Energy Joint Genome Institute (DOE JGI) have developed a suite of build-optimization software tools (BOOST) to streamline the design-build transition in synthetic biology engineering workflows.

    Read more

  • User Programs
    • Calls for User Proposals
    • Special Programs
    • User Support
    • Submit a Proposal
    Cropped image of switchgrass microcosm showing established root network. (James Moran)
    FY 2019 FICUS EMSL-JGI Projects Selected
    Through the EMSL-JGI FICUS calls, users can combine EMSL’s unique imaging, omics and computational resources with cutting-edge genomics, DNA synthesis and complementary capabilities at JGI. This was the sixth FICUS call between EMSL and JGI since the collaborative science initiative was formed.

    Read more

    Preparing for a Sequence Data Deluge
    The approved CSP 2019 proposals leverage new capabilities and higher throughput in DNA sequencing, synthesis and metabolomics. Additionally, just over half of the accepted proposals come from primary investigators who have never led any previously accepted JGI proposal.

    Read more

    The molecule cyclic di-GMP plays a key role in controlling cellulose production and biofilm formation. To better understand cyclic di-GMP signaling pathways, the team developed the first chemiluminescent biosensor system for cyclic di-GMP and showed that it could be used to assay cyclic di-GMP in bacterial lysates. (Image courtesy of Hammond Lab, UC Berkeley)
    Innovative Technology Improves Our Understanding of Bacterial Cell Signaling
    Cyclic di-GMP (Guanine Monophosphate) is found in nearly all types of bacteria and interacts with cell signaling networks that control many basic cellular functions. To better understand the dynamics of this molecule, researchers developed the first chemiluminescent biosensors for measuring cyclic di-GMP in bacteria through work enabled by the JGI’s Community Science Program (CSP).

    Read more

  • News & Publications
    • News Releases
    • Blog
    • Publications
    • Scientific Posters
    • Newsletter
    • Logos
    • Photos
    One of the heated plots at the Harvard Forest (Jeff Blanchard)
    Hidden Giants in Forest Soils
    In Nature Communications, giant virus genomes have been discovered for the first time in a forest soil ecosystem by JGI and University of Massachusetts-Amherst researchers. Most of the genomes were uncovered using a "mini-metagenomics" approach that reduced the complexity of the soil microbial communities sequenced and analyzed.

    Read more

    Truffle orchard in Lorraine, France. (Francis Martin)
    Symbiosis a Driver of Truffle Diversity
    Truffles are the fruiting bodies of the ectomycorrhizal (ECM) fungal symbionts residing on host plant roots. In Nature Ecology & Evolution, an international team sought insights into the ECM lifestyle of truffle-forming species. They conducted a comparative analysis of eight Pezizomycete fungi, including four species prized as delicacies.

    Read more

    Blyttiomyces helicus on spruce pollen grain. (Joyce Longcore)
    Expanding Fungal Diversity, One Cell at a Time
    In Nature Microbiology, a team led by JGI researchers has developed a pipeline to generate genomes from single cells of uncultivated fungi. The approach was tested on several uncultivated fungal species representing early diverging fungi.

    Read more

Our Science
Home › Science Highlights › A Model System for Perennial Grasses

December 7, 2018

A Model System for Perennial Grasses

Panicum hallii genomes offer insights to drought tolerance.

The Science

Representative morphology of Panicum hallii var. filipes and Panicum hallii var. hallii grown under controlled greenhouse conditions in Austin, Texas. Left is the FIL2 genotype; right is the HAL2 genotype. (Amalia Díaz)

Representative morphology of Panicum hallii var. filipes and Panicum hallii var. hallii grown under controlled greenhouse conditions in Austin, Texas. Left is the FIL2 genotype; right is the HAL2 genotype. (Amalia Díaz)

Researchers have developed a genomic model to study drought tolerance in perennial grasses using Panicum hallii (Hall’s panicgrass), by generating two complete genomes from varieties that diverged over a million years ago. The hallii variety thrives in desert environments, while the filipes variety is less drought tolerant and is found in river and coastal environments.

The Impact

The perennial grass switchgrass (Panicum virgatum) is a candidate bioenergy feedstock with a complex genome with multiple copies of its chromosomes. Switchgrass has deep roots that allow it to access nutrients easily from a variety of soils and has a high tolerance of extreme water conditions such as drought and floods. The U.S. Department of Energy (DOE) supports research programs for developing methods for converting plant biomass into sustainable fuels for cars and jets. By studying a close relative model species like P. hallii, researchers can develop crop improvement techniques that could be applied to switchgrass.

Summary

Rising global temperatures are causing extreme weather events, ranging from prolonged droughts to extended periods of very heavy rainfall and severe flooding. With an ever-increasing global population, drought is an obstacle toward improving crop yields for food and fuel use.

In Nature Communications, a team led by Tom Juenger at the University of Texas (UT) at Austin and including researchers at the DOE Joint Genome Institute (JGI), a DOE Office of Science User Facility, report the culmination of nearly a decade of work to develop genomic resources for drought tolerance in perennial grasses. The team aims to apply the resources developed for P. hallii towards stress tolerance improvement in its more complex relative, the candidate bioenergy crop, switchgrass.

Field researchers studying drought responses in Panicum hallii at the UT Austin Brackenridge Field Lab. (David Gilbert)

Field researchers studying drought responses in Panicum hallii at the UT Austin Brackenridge Field Lab. (David Gilbert)

Through the JGI’s Community Science Program, JGI sequenced and assembled near-complete genomes of P. hallii var. hallii (99.2% complete) and P. hallii var. filipes (94.8% complete) and resequenced a host of natural collections from across the species range. With these high-quality reference genomes for P. hallii, researchers can identify and characterize the regulatory elements that influence adaptation and tolerance to stressors such as drought. This information can be applied toward improving crop yields in other grasses.

The team conducted several large-scale field experiments and analysis to find relationships between sequence variation and plant stress responses. For example, offspring of a cross between the hallii (HAL2) and filipes (FIL2) varieties were subjected to a monthlong drought, and then half the plants were watered just before harvesting. As HAL2 has adapted to severe summer droughts, these plants were better able to uptake soil water compared to the other plants. The team used QTL mapping to find the genomic regions that control gene expression and physiological responses to drought. They found that trans-regulating factors are important regulatory elements that determine drought responses in P. hallii.

The HAL2 and FIL2 genomes are available on the JGI’s plant portal Phytozome.

Contacts:

BER Contact
Ramana Madupu, Ph.D.
Program Manager
Biological Systems Sciences Division
Office of Biological and Environmental Research
Office of Science
US Department of Energy
Ramana.Madupu@science.doe.gov

PI Contact
Tom Juenger
The University of Texas at Austin
tjuenger@austin.utexas.edu

Funding:

The work conducted by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231. The UT Brackenridge Field Lab and the Ladybird Johnson Wildflower Center provided support and field sites for experiments. This work was funded by NSF/IOS-1402393 (JTL), NSF/IOS-1639872 (JTL/TEJ), NSF/IOS-0922457 (TEJ), NSF/IOS-1444533 (TEJ), DOE/DE-SC0008451 (TEJ), DOE/DE-SC0018409 (DBL), DOE/DE-FC02-07ER64494 (DBL), and USDA/NIFA 2011-67012-309969 (DBL). Support was also provided by the Russian Government Program of Competitive Growth of Kazan Federal University.

Publication:

  • Lovell JT et al. The genomic landscape of molecular responses to natural drought stress in Panicum hallii. Nature Communications. 2018 December 6. doi:10.1038/s41467-018-07669-x

Related Links:

  • JGI Community Science Program
  • JGI Science Highlight: Mapping water management traits related to panic grass variants
  • CSP 2013 proposal: Developing Panicum hallii as a genetic and genomic model
  • HAL2 genome on Phytozome: Panicum hallii var. hallii
  • FIL2 genome on Phytozome: Panicum hallii var. filipes

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Science Highlights

More topics:

  • News Releases
  • Science Highlights
  • Blog
  • CSP Plans
  • Featured Profiles

Related Content:

Mining Metagenomes for Cas Proteins

Click on the image above or click here (https://youtu.be/iSEEw4Vs_B4) to watch a CRISPR Whiteboard Lesson from the Innovative Genomics Institute, this one focuses on the PAM sequence.

Mapping Heat Resistance in Yeasts

At high temperature, S. paradoxus cells die in the act of cell division, as seen by the dyads with cell bodies shriveled away from the outer cell wall. (Images by Carly Weiss, courtesy of the Brem Lab)

First Monoploid Reference Sequence of Sugarcane

The reference sequence is useful for mapping the genes involved in sugar production and for identifying different variants on different chromosomes, information that can be used to assemble a more complex and more realistic polyploid sugarcane genome now underway. (Rufino Uribe, CC-SA 2.0)

Defining a Pan-Genome for Antarctic Archaea

Antarctica’s Deep Lake. (Rick Cavicchioli)

Corymbia Genome Expands Terpene Synthesis Knowledge

Corymbia citriodora subspecies citriodora is a native of north Queensland in Australia but is grown throughout the subtropics for essential oil production. (Photo by Mervyn Shepherd)

Innovative Technology Improves Our Understanding of Bacterial Cell Signaling

The molecule cyclic di-GMP plays a key role in controlling cellulose production and biofilm formation. To better understand cyclic di-GMP signaling pathways, the team developed the first chemiluminescent biosensor system for cyclic di-GMP and showed that it could be used to assay cyclic di-GMP in bacterial lysates. (Image courtesy of Hammond Lab, UC Berkeley)
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Facebook
  • Flickr
  • Google+
  • Instagram
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2019 The Regents of the University of California