DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

Our Science
Home › News Releases › iPHoP: A Matchmaker for Phages and their Hosts

June 7, 2023

iPHoP: A Matchmaker for Phages and their Hosts

To understand virus-host dynamics, computation helps fill in what cultivation can’t.

iPHoP image (Simon Roux)

Schematic of the tool workflow. (Simon Roux)

The Science

At first, viruses are merely toolkits. To do anything, they must find a host, and not just any host will do. It must be a specific host the virus has adapted to commandeer. For bacteriophage viruses, these hosts are microbes like bacteria, not humans. With metagenomic sequencing, researchers have found more of these viruses than ever before, in all kinds of ecosystems. However, matching these viral genetic sequences to their hosts is crucial to understanding what these viruses can do. Building on existing virus-host prediction approaches, researchers have created a new program called iPHoP (pronounced “eye-pop”, freely available online). It combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

The Impact

Within the domains of archaea and bacteria, millions of microbes govern ecosystems. These organisms carry out important environmental processes like carbon fixation, nitrogen cycling and methane production. Meanwhile, environmental viruses are constantly infecting and reprogramming these microbes. A better understanding of virus-host interactions opens the possibility of using phages to engineer microbial communities. One day, these phages could boost plant-microbe interactions, nutrient cycling, or carbon sequestration.

Summary

Existing programs use a variety of approaches to match a virus with a potential host. This can result in different predictions. The iPHoP program brings several of these approaches together into the same workflow, then uses a machine-learning model to give its integrated prediction a confidence score. The result is a genus-level host prediction tool that draws on the strengths of multiple virus-host prediction methods.

In building this program, described in Plos Biology, the research team led by scientists at the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, aimed to streamline a process they often took on: generating virus-host predictions via multiple routes, then considering different suggested matches. The machine learning model in the iPHoP program creates a way of evaluating these different routes. To train the model, the team used 1,870 known virus-host pairs to generate a matrix of data points. 

Applied to 216,015 high-quality virus sequences in the IMG/VR database, the iPHoP program generated many new high-confidence host predictions across a variety of ecosystems. In particular, it predicted many more likely hosts for viruses in human microbiome samples, reflecting factors such as the quality and number of datasets for human microbiome data. In other environments, such as terrestrial soil, having additional isolates and metagenomic datasets will strengthen future virus-host predictions. This information could open the door to improving crop yields and a better understanding of the roles viruses and their host microbes play in nutrient cycles.

Contacts

BER Contact
Ramana Madupu, Ph.D
Program Manager
Biological Systems Sciences Division
Office of Biological and Environmental Research
Office of Science
Department of Energy
Ramana.Madupu@science.doe.gov

PI Contact
Simon Roux
Viral Genomics Group Lead
DOE Joint Genome Institute
SRoux@lbl.gov

Funding

This work was supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Early Career Research Program awarded under UC-DOE Prime Contract DE-AC02-05CH11231. The work conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231 (SR, APC, SN). 

Publications

Roux, S. et al. “iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria.” PloS Biology 21(4): e3002083 (2023). DOI: 10.1371/journal.pbio.3002083 

Related Links

  • IMG/VR database: genomes of cultivated and uncultivated viruses
  • JGI Science Highlight: A History of Phage-Host Interactions With Help From CRISPRs
  • Intern Spotlight: Exploring Phages at JGI

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases, Science Highlights

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

You can move, but you can’t hide

Illustration of a magnifying glass identifying viruses and plasmids.

JGI announces second round of 2023 New Investigator awardees

From left to right: [above] Emma Bell, Mallory Choudoir, Sneha Couvillion, Tobin Hammer, Christina Hazard, Rachel Mackelprang, Brook Moyers, Mei, Ran,; [below] Benjamin Peterson, Dacheng Ren, Allison Rober, Neal Scott, Chikae Tatsumi, Vojtech Tlaskal, Fernando Torralbo, Luis Felipe Valdez-Nuñez

A Collaboration to Improve Plant Genome Annotations Across Species

A tiled collage of square photos of different plants - soybeans, and sorghum, for example.

From Berkeley to Binghamton: Tracking Strawberry Evolution

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.

New Research Sheds Light on Diversity in the Deep Sea

A photo taken in the deep sea. Black clouds billow out of hydrothermal vents.
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California