DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

Our Science
Home › Science Highlights › Subsurface Sediment Yields Novel Organism

August 30, 2013

Subsurface Sediment Yields Novel Organism

Metagenomic analysis emphasizes the “extraordinary microbial novelty” of poorly-explored subsurface ecosystems

The Science

Through metagenomics, researchers reconstructed a dominant organism and member of a new phylum-level lineage from an aquifer sediment in Colorado.

The Impact

Analysis of the complete microbial genome led to a detailed metabolic model with evidence for multiple new enzymes and pathways. The findings serve to emphasize the unexplored diversity of subsurface microbes, considered by the researchers to be the “dark matter of the carbon and other biogeochemical cycles.”

Summary

The 1,450-mile long Colorado River flows from the southwestern United States to northwestern Mexico.

The 1,450-mile long Colorado River flows from the southwestern United States to northwestern Mexico.

Despite the efforts made to learn more about the microbial diversity in, on and around the planet in the past decade, the microbes located below the Earth’s surface remain difficult to characterize, in part due to their locations. However, these microbes are known to play significant roles in biogeochemical cycles. To help fill in the gaps of knowledge about these microbes, a team of researchers led by DOE JGI collaborator Jillian Banfield of UC Berkeley and Lawrence Berkeley National Laboratory sequenced samples from a contaminated aquifer at the Rifle Integrated Field Research Challenge site adjacent to the Colorado River in western Colorado. The two microbial communities found in the samples were studied as part of a 2012 DOE JGI Community Sequencing Program project.

As reported in the study published August 27, 2013 in Nature Communications, analyses of the datasets indicated that the subsurface microbial communities consisted of many bacteria and archaea from classes and orders that had not been previously recognized or sampled. Additionally, the researchers were able to completely reconstruct the genome of a dominant organism called RBG-1 in a microbial community, one previously unknown and which turned out to be a member of a new phylum lineage.

“We document extraordinary microbial novelty and the importance of previously unknown lineages in sediment biogeochemical transformations,” the researchers reported. “Many bacteria and archaea in these communities are novel at the phylum level or belong to phyla lacking a sequenced representative.”

Contact

Jillian Banfield
UC Berkeley/LBNL
jbanfield@berkeley.edu

Funding

DOE Office of Science, Office of Biological and Environmental Research
Integrated Field Research Challenge
Subsurface Biogeochemical Research Program

Publications

Castelle CJ et al. Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment. Nat Commun. 2013 Aug 27. doi: doi:10.1038/ncomms3120.

Related Links

http://www.nature.com/ncomms/2013/130827/ncomms3120/full/ncomms3120.html#abstract

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Science Highlights Tagged With: archaea, bacteria, carbon cycle, metagenomics, microbes, microbial genomics

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

New Research Finds Flagella in the Terrestrial Roots of Marine Bacteria

A photo of Great Boiling Spring in the forefront with mountains in the background.

For the Tiniest Archaea, A Genomic Switch of Friend or Foe

A grey microscopy photo taken at micron-scale. Microbes shown are small, round and slightly spiky in shape.

You Can Move, But You Can’t Hide

Illustration of a magnifying glass identifying viruses and plasmids.

iPHoP: A Matchmaker for Phages and their Hosts

iPHoP image (Simon Roux)

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.

New Research Sheds Light on Diversity in the Deep Sea

A photo taken in the deep sea. Black clouds billow out of hydrothermal vents.
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California