DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

    Artist rendering of genome standards being applied to deciphering the extensive diversity of viruses. (Illustration by Leah Pantea)
    Expanding Metagenomics to Capture Viral Diversity
    Along with highlighting the viruses in a given sample, metagenomics shed light on another key aspect of viruses in the environment — their sheer genetic diversity.

    More

    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    CSP New Investigators FY23 R1
    JGI Announces First Round of 2023 New Investigator Awardees
    Twice each year we look for novel research projects aligned with DOE missions and from PIs who have not led any previously-accepted proposals through the CSP New Investigator call.

    More

    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

News & Publications
Home › News Releases › Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs

September 16, 2021

Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs

As warm-adapted microbes edge polewards, they’d oust resident tiny algae.

Scientists sample a brown mat of aggregated phytoplankton. (Katrin Schmidt)

Scientists sample phytoplankton communities, utilising a ‘mummy chair.’ Shown here, they’re sampling a brown mat of aggregated phytoplankton. (Katrin Schmidt)

The cold polar oceans give rise to some of the largest food webs on Earth. And at their base are microscopic, photosynthetic algae. But human-induced climate change, a new study suggests, is displacing these important cold-water communities of algae with warm-adapted ones, a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

At the base of marine food webs are microscopic photosynthesizing organisms called phytoplankton (from the Greek phyto for ‘plant’ and planktos for ‘wanderer’). But they vary across the global ocean. Phytoplankton communities in warmer waters, including the tropics, tend to be dominated by prokaryotes (microorganisms without a defined nucleus).

Colder waters nearer the poles, however, tend to favor eukaryotes (microorganisms with a nucleus). These photosynthesizing eukaryotes, or algae, form the basis of productive food webs in cold, but fecund polar waters.

“A lot of our food comes from the North Atlantic, North Pacific and South Pacific fisheries, because of eukaryotic phytoplankton — not prokaryotes,” said Thomas Mock, marine microbiologist at the University of East Anglia (UEA, UK) and senior author of the study. “Prokaryotes are not capable of producing all the juicy proteins and lipids that eukaryotes are.”

Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)

Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)

But according to a new study published September 16, 2021 in Nature Communications, warmer waters and communities dominated by prokaryotes could replace those of eukaryotes much more easily than previously suspected.

“That would cause significant consequences on the entire food web, and therefore ecosystem services that we all depend on,” said Mock.

Mock and the other lead scientists had embarked on the study — a collaboration of eight institutions led by UEA and including the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility located at Lawrence Berkeley National Laboratory — with a desire to understand the nuance and gradation of how eukaryotic phytoplankton communities change with latitude.

An invisible boundary

The team set out on a Lewis-and-Clark-like expedition to explore, collect and catalog samples, and look for patterns in algal communities, including the algae-associated microbiomes that influence algal diversity and gene expression. Sailing from pole to pole on four research cruises, they dipped their self-closing containers into sea water to sample algal communities along transects in the Arctic Ocean, North Atlantic Ocean, South Atlantic Ocean and Southern Ocean.

Sailing through Arctic Sea ice with one of the team’s sampling vessels, the Polarstern. These ice floes are approximately three to six feet thick. (Katrin Schmidt)

Sailing through Arctic Sea ice with one of the team’s sampling vessels, the Polarstern. These ice floes are approximately three to six feet thick. (Katrin Schmidt)

After isolating the algal communities on filters, they sequenced DNA ‘marker’ gene sequences to identify the microbes. And in order to determine what genes the algae were expressing, the team sequenced their RNA transcripts. All sequencing was done through the JGI Community Science Program.

Using an ecology metric called beta diversity, the team observed that algal communities didn’t change gradually across the global ocean. Instead, they sharply delineated into two big geographical groups: those in colder, polar waters, and those in warmer, non-polar waters.

In other words, some like it hot; some do not.

“We can think about the ocean, naively, as a sort of homogeneous medium. In reality, it’s not — there is variation of nutrients, temperatures, and other physico-chemical properties,” said study coauthor Igor Grigoriev, JGI Fungal & Algal Program Head. “But still, there are no boundaries in the ocean. Yet, what was found here is that there is this invisible partitioning of algal communities.”

The team found that the boundary, or biodiversity ‘break point,’ between these algal communities occurs in moderate waters that have an average surface temperature of about 58° Fahrenheit (14° Celsius) — a cool intermediate to the ocean’s extremes of about 28° and 97° Fahrenheit.

“The study authors point to this fundamental observation of cold and warm microbial networks, and just how clear and stark the biogeographic boundary is between them. The data is somewhat beautiful in that regard,” said Andy Allen, biological oceanographer at the University of California, San Diego and the Scripps Institution of Oceanography, who was not affiliated with the study.

Climate change is in fact gravely affecting the sea ice and water temperature in polar climes, throwing these polar communities into jeopardy.

“We know so little about these algal communities; they could have beneficial findings, like antibiotics, pharmaceuticals, and novel enzymes that function at low temperature.” said Katrin Schmidt, co-lead author of the study with Kara Martin. “But these ecosystems are literally melting away.”

A curious polar bear near Greenland checks out the Polarstern. Polar bears, which feed on seals, are part of the arctic ocean food web that climate change threatens. (Katrin Schmidt)

A curious polar bear near Greenland checks out the Polarstern. Polar bears, which feed on seals, are part of the arctic ocean food web that climate change threatens. (Katrin Schmidt)

Driven by climate change

The team used a model from the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report to predict where and how fast the 14° Celsius boundary is moving.

“It’s driven by climate: warm water is replacing cold water communities. And this changes everything,” said Mock.

The steady march of warmer waters polewards could have dire consequences for marine organisms in these food webs, said Schmidt. Several whale species, including gray whales and humpbacks, migrate to feed in the polar regions. And shrimp dine on the algae that cling to the underside of sea ice.

One important algae-eater that could be affected by warming waters and shifting algal communities is krill — an organism that thrives in the Southern Ocean, looks like shrimp, and is food for larger organisms such as whales, penguins, and seals. “The biomass of krill at least equals the biomass of all humans on the planet,” said Mock. “This gives you an idea of how significant these organisms are. And now, imagine the base of the ecosystem is changing from cold water, eukaryotic phytoplankton communities to warm water, prokaryotic phytoplankton communities.”

A change in the base would reverberate throughout the food web, like taking a jackhammer to the foundation of a cathedral. What’s more, because phytoplankton (eukaryotic and prokaryotic combined) contribute to an estimated 50 percent of the world’s fixed carbon, altering the balance of eukaryotic and prokaryotic communities could alter the global carbon cycle, the rates at which carbon globally is fixed and metabolized.

As average sea surface temperatures increase due to climate change, Thomas Mock has seen shifting aquatic life — for example, this European sea bass — off England’s southeast coast. European sea bass have a temperature optimum range of around 50 to 77 degrees Fahrenheit, while cod, iconic for its popularity at UK fish-and-chip shops, prefer to live between about 34 to 59 degrees Fahrenheit. (Thomas Mock)

As average sea surface temperatures increase due to climate change, Thomas Mock has seen shifting aquatic life — for example, this European sea bass — off England’s southeast coast. European sea bass have a temperature optimum range of around 50 to 77 degrees Fahrenheit, while cod, iconic for its popularity at UK fish-and-chip shops, prefer to live between about 34 to 59 degrees Fahrenheit. (Thomas Mock)

Not only that, these changes — brought about by climate change — could threaten marine food industries and other ecosystem services, such as tourism and recreation, on which coastal and island nations, like the UK, depend, said Mock.

“I think that this paper is going to be used to advise policymakers to mitigate the effects of climate change on ecosystems, because we now have a new angle on how warming is impacting these marine communities,” said Mock. The greenhouse gas carbon dioxide (CO2), produced from the burning of fossil fuels, is what’s causing the ocean surface temperature to rise. “What needs to be done is reducing the production of CO2 — this is the first and foremost important thing we need to do.”

The study also involved researchers at the following institutions: the Earlham Institute (UK), University of Exeter (UK), the Alfred Wegener Institute for Polar and Marine Research (Germany), the University of Duisburg-Essen (Germany), the Royal Netherlands Institute for Sea Research (The Netherlands), University of Groningen (The Netherlands).

 

Publication: Martin K et al. “The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole.” Nature Communications. 2021 September 16. doi: 10.1038/s41467-021-25646-9

Behind the Paper: The Biogeography of Algal Microbiomes from the Arctic to the Antarctic by Katrin Schmidt

 

Byline: Alison F. Takemura

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases Tagged With: 2022-progress-sci-highlight

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

New Research Sheds Light on Diversity in the Deep Sea

A photo taken in the deep sea. Black clouds billow out of hydrothermal vents.

Sequencing Sphagnum Leads to Discovery of Sex Chromosomes

A photo of two sphagnum species: S. divinum (red) and S. angustifolium (green)]

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.

JGI announces final round of 2022 Functional Genomics awardees

Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!

Introducing New Members of the JGI User Executive Committee

incoming 2023 UEC members
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California