DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

    Algae growing in a bioreactor. (Dennis Schroeder, NREL)
    Refining the Process of Identifying Algae Biotechnology Candidates
    Researchers combined expertise at the National Labs to screen, characterize, sequence and then analyze the genomes and multi-omics datasets for algae that can be used for large-scale production of biofuels and bioproducts.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

    Ian Rambo, graduate student at UT-Austin, was a DOE Graduate Student Research Fellow at the JGI
    Virus-Microbe Interactions of Mud Island Mangroves
    Through the DOE Office of Science Graduate Student Research (SCGSR) program, Ian Rambo worked on part of his dissertation at the JGI. The chapter focuses on how viruses influence carbon cycling in coastal mangroves.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

    Integrating JGI Capabilities for Exploring Earth’s Secondary Metabolome
    Natural Prodcast podcast: Nigel Mouncey
    JGI Director Nigel Mouncey has a vision to build out an integrative genomics approach to looking at the interactions of organisms and environments. He also sees secondary metabolism analysis and research as a driver for novel technologies that can serve all JGI users.

    More

News & Publications
Home › News Releases › Uncovering Hidden Microbial Lineages from Hot Springs

January 27, 2016

Uncovering Hidden Microbial Lineages from Hot Springs

Metagenomics and single cell strategies help reveal a novel bacterial phylum.

Kryptonia Composite by Emiley Eloe-Fadrosh

A ‘Ca. Kryptonia’-specific FISH probe was designed and used to visualize cells from Dewar Creek Spring sediment samples. ‘Ca. Kryptonia’ cells hybridizing with the probe are green, while other cells are visualized with 4′,6-diamidino-2-phenylindole (DAPI; blue). (Composite image by Emiley Eloe-Fadrosh, DOE JGI)

Although global microbial populations are orders of magnitude larger than nearly any other population in, on or around the planet, only a fraction has been identified thus far. The U.S. Department of Energy (DOE) is seeking to uncover the true extent of the planet’s microbial diversity in order to learn more about the genes, enzymes and metabolic pathways that play key roles in regulating critical biogeochemical cycles. More thorough surveys could lead to new strategies for DOE researchers to advance their energy and environmental investigations.

In a study published January 27, 2016 in Nature Communications, a team led by researchers at the DOE Joint Genome Institute (JGI), a DOE Office of Science User Facility, utilized the largest collection of metagenomic datasets to uncover a completely novel bacterial phylum that they have dubbed “Kryptonia.”

“We were interested in looking for novel, divergent bacterial or archaeal sequences that hadn’t been previously characterized,” said study first author Emiley Eloe-Fadrosh, a DOE JGI research scientist. “We didn’t have a particular target to go after, but reasoned that there was likely a wealth of untapped diversity just waiting to be discovered in all the metagenomic data.”

A Signal in the Noise

Emiley Eloe-Fadrosh at 2015 User Meeting

Watch Emiley Eloe-Fadrosh on the search for Kryptonia from the DOE JGI’s 2015 Genomics of Energy and Environment Meeting at http://bit.ly/JGI15UMKryptonia.

A researcher analyzing vast quantities of genomic data is not unlike a beachcomber slowly scanning a beach with a metal detector. Both are searching for a signal in the noise that indicates buried treasure, be it novel microbes or pirate gold. The team started with 5.2 trillion bases (Terabases or Tb) of sequence in the Integrated Microbial Genomes with Microbiome Samples (IMG/M) system. After scouring this equivalent of over 1,700 human genomes or 1 million E. coli bacterial genomes the team identified long sequences that contained a phylogenetic marker (DNA corresponding to ribosomal RNA, rRNA) commonly used to assign all life (bacteria, archaea, and eukaryotes) into a particular classification system.

The team identified sequences from four different geothermal springs – Great Boiling Spring, Nevada, Dewar Creek Spring in Canada, and the Gongxiaoshe and Jinze pools in China – that could not be placed into any recognizable phylum. Reconstructing the genomes from metagenomic datasets and single cell genomes yielded four lineages belonging to the novel candidate phylum, named Kryptonia (Candidatus Kryptonia) from the Greek word for “hidden.”

Gongxiaoshe Spring, China by Brian Hedlund, UNLV

Among the hot springs where Kryptonia was found is Gongxiaoshe Spring in China, shown with the rural Chinese village of Dientan in the background. (Brian Hedlund, UNLV)

Given that there are currently 35 cultured bacterial and archaeal phyla, and roughly the same number of recognized uncultured phyla, Eloe-Fadrosh says the identification of a novel candidate phylum was a surprise. “It’s not every day that you find a completely new phylum. With all the studies that have been conducted in hot springs, there’s an assumption that all novelty has been found. But we found these unknown lineages in high abundance.” UPDATE: A complementary paper in Nature Microbiology speculated on the microbial lineages that remain unknown due to technology biases. Read more about this at http://jgi.doe.gov/strategy-to-uncover-more-microbial-lineages/.

The analysis of the nearly complete Kryptonia genomes recovered from this metagenomics dataset also revealed the presence of the CRISPR-Cas phage defense system in these organisms. Using this information, the team was able to track the global biogeographic distribution of Kryptonia vis-à-vis the putative phages infecting the bacteria. “While a lot of research and media attention is gathering around the biotechnological applications of the CRISPR-Cas system, we are very excited about using it as a powerful tool in reconstructing the infection history of the organisms, as well as a fingerprint to uncover and trace the correlated viruses,” said Prokaryote Super Program Head Nikos Kyrpides, a co-author of the paper.

Uncovering Novelty Also Reveals Biases

Analyses of Kryptonia reveal that the bacteria need to rely on other microbes for several nutritional requirements, suggesting a reason this candidate phylum had not been found previously despite its abundance in geothermal springs. “We hypothesize that Kryptonia engages in a metabolic partnership, and it’s very challenging to cultivate bacteria that have unique interactions in the wild that can’t necessarily be replicated in the lab,” said Eloe-Fadrosh, who credited the combined power of metagenomics and single-cell genomics to capture the novel microbes described in the paper. “I think one of the grand challenges for the field is to quantify microbial diversity, and these technologies are getting us closer to making that a reality.”

The work reinforces the perspective published in Science last year by DOE JGI Director Eddy Rubin and Microbial Program head Tanja Woyke. “There are reasons to believe that current approaches may indeed miss taxa, particularly if they are very different from those that have so far been characterized,” they wrote. “Past explorations of available metagenomic data sets have focused on the discovery of matches to the known genes and genomes—an analysis that is naturally biased against uncovering completely novel life.”

Great Boiling Spring in Nevada by Brian Hedlund

Sequences from Great Boiling Spring in Nevada have been attributed to the novel candidate phylum Kryptonia. (Brian Hedlund, UNLV)

Eloe-Fadrosh said the team found unique metabolic pathways in Kryptonia, hints that there may be other novel enzymes related to biological pathways waiting to be uncovered. “Just like Taq polymerase was revolutionary to molecular biology, there could be an enzyme in Kryptonia with biotechnological relevance,” she added.

Her words echo the speculations offered by study co-author and DOE JGI collaborator Brian Hedlund of the University of Nevada, Las Vegas. Noting that Kryptonia play a role in lignocellulose degradation, he added that there are potential resources still waiting to be tapped for biotechnology applications in the “microbial dark matter” from which Kryptonia has only just emerged. For example, he said, companies are marketing enzymes from thermophiles for quick diagnostic tests including those from previous research enabled by the DOE JGI on Yellowstone hot pools. “I do believe that applications are there if people spend time and money looking for the microbes,” he said.

Eloe-Fadrosh spoke about the search for Kryptonia at the DOE JGI’s 2015 Genomics of Energy and Environment Meeting. Watch the video at http://bit.ly/JGI15UMKryptonia.

Aside from Hedlund at the University of Nevada, Las Vegas, collaborators on this work include researchers at: University of Calgary (Canada); Lawrence Livermore National Laboratory; Geological Survey of Canada; McMaster University (Canada); Miami University; University of Alaska-Anchorage and Sun Yat-Sen University (China).

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

JGI at 25: Solving the Mystery of the Missing Oil

A surface slick in the Gulf of Mexico, taken ~1.5 km from the Deepwater Horizon wellhead (Olivia Mason, LBNL).

JGI at 25: The Human Genome Project, or the JGI’s Origin Story

JGI contributions detailed in DOE Human Genome Project poster

JGI at 25: A Single Cell, Myriad Microbial Discoveries

Artistic rendering of a microbial genome layered over a dark forest. (Composition by Zosia Rostomian/Berkeley Lab)

Calculating the Costs of Multiple Switchgrass Gene Copies

: Documented occurrences of different switchgrass cytotypes (4X in blue and 8X in orange) throughout the United States. One of the early interests in exploring 8X switchgrass was because the noticeable occurrence of 8X in 4X distribution gaps. (Joseph Napier)

The Power of One, Amplified

One of the pools at Dewar Creek hot springs in British Columbia, Canada. (Allyson Brady)

JGI at 25: Roots of a Mutualist Relationship

Laccaria bicolor
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2022 The Regents of the University of California