DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

All JGI Features
Home › Items tagged with: Tanja Woyke

Content Tagged "Tanja Woyke"

December 5, 2011

Tanja Woyke: Genome Technology 2011 Young Investigator

What inspired Tanja Woyke to pursue her current area of focus is also what makes it possible: single-cell genomic technology. “It allows one to sequence the genome of one individual microbial cell by amplifying its genome a billion-fold using a process called multiple displacement amplification,” she says. “I find this quite fascinating. Such an approach… [Read More]

October 21, 2011

UV treatments for contaminated MDA reagents

  Single cell genomicsis a method used by researchers to get around the research roadblock thrown up by the need for large amounts of microbial DNA in order to do traditional sequencing techniques. In this process, a single cell isolated from an environmental sample is amplified to make millions of copies of the microbial genome… [Read More]

September 6, 2011

Dark ocean project in Climate Action

To understand the world’s climate, we must understand how the 70% of the Earths surface that is covered with water behaves. Very little is known about the processes below 200m, or the area where photosynthesis is not possible due to the lack of light penetration. Scientists from the U.S. Department of Energy Joint Genome Institute… [Read More]

September 2, 2011

Capturing carbon in the dark ocean

Using single cell genomics, researchers identified bacteria in the “twilight zone” that are involved in capturing carbon. [Read More]

May 2, 2011

Single cell sequencing in Genome Technology

Using a single-cell approach developed by Ramunas Stepanauskas at the Bigelow Laboratory for Ocean Sciences in West Boothbay Harbor, Maine, a group of researchers aims to sequence 60 new marine bacterio-plankton in conjunction with the US Department of Energy’s Joint Genome Institute. That way, there will be better reference genomes available for researchers studying marine… [Read More]

March 25, 2011

Finding cellulases in sediment from a paper mill

During the DOE JGI User Meeting held in Walnut Creek, Calif. from March 22-24, 2011, collaborator Daniel Distel noted that more than 20 enzymes are needed to break down cellulose. To assist in identifying novel cellulose degraders and thus improve cellulosic biofuel production processes, a team of DOE JGI researchers including Microbial Program head TanjaWoyke… [Read More]

January 27, 2011

Cow rumen metagenome study in This Week in Science

Identification of additional enzymes that can degrade cellulose efficiently should help in the development of biofuels on an industrial scale. Uncultured microorganisms living in cow rumen are highly effective at degrading plant cell walls. Hess et al. used metagenomics and single-genome sequencing to assemble draft genomes from microbes adhering to rumen-incubated switchgrass to identify nearly… [Read More]

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California