DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

Our Science
Home › Science Highlights › Seeking “Gold Standard” Wastewater Treatments

September 14, 2015

Seeking “Gold Standard” Wastewater Treatments

Metagenomic analyses lend insights into how microbes break down wastewater contaminants.

The Science:

Researchers conducted analyses of microbial communities in laboratory-scale bioreactors breaking down contaminated wastewater from gold ore processing.

liquid gold demo by Dan Brown via Flickr CC BY 2.0

Liquid gold being poured into a cast at Gold Reef City in Johannesburg, South Africa. Processing gold ore involves the use of cyanide, resulting in contaminated wastewater that needs to be remediated. In this study, researchers conducted metagenomic analyses to identify microbes that could help with the bioremediation process. (Credit: Dan Brown via Flickr CC BY 2.0 license.)

The Impact:

In this “first application of genome-resolved metagenomics” to characterize bioreactors involved in gold ore processing, the data reveal how the bioreactors utilize available nutrients in wastewater and allow researchers to observe which microbes dominate the communities, which will help improve microbial-based remediation strategies.

Summary

The Emerging Technologies Opportunity Program (ETOP) was launched in 2013 by the U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory. The Program aims to bring new technologies developed at other institutions into the DOE JGI, making them available to its users for energy and environment applications. A half a dozen proposals were approved during the Program’s first year.

Among the projects approved in the inaugural ETOP call was one from metagenomics pioneer Jill Banfield at the University of California, Berkeley. Banfield proposed building and characterizing a pipeline that would allow researchers to isolate and study both near-complete and complete microbial genomes from environmental samples. One of the results from this project was published July 28, 2015 in Environmental Microbiology.

Natural ecosystems and the diverse communities of microbes (and other organisms) within them are extremely difficult to study because they are not closed systems, where all inputs and outputs can be accessed. To make the compositions and activities of microbial communities more tractable for analyses with genomic methods, this study focused on microbial communities in laboratory bioreactors that were being studied as a potential method of treating wastewater contaminated by gold ore processing. From these bioreactors, the team reconstructed draft and curated microbial genomes using high-throughput metagenomic sequencing of biofilm and supernatant samples. In one bioreactor, a mixture of cyanide (CN-) – used for processing gold ore – and thiocyanate (SCN-) – a byproduct of the process – was being degraded, while in the other bioreactor, only thiocyanate was being degraded.

“This is the first application of genome-resolved metagenomics to characterize SCN− and CN− bioreactors,” the team noted, “revealing a complex community containing novel organisms and genes.” The analyses allowed the team to outline the structures of the microbial communities and diagram potential nutrient flow paths. For example, they found evidence indicating that the microbes were not relying on the molasses included in the media as an energy source, which could help reduce bioreactor operating costs on the commercial scale. They also recovered several genome sequences allowing them to determine the composition of the communities in the bioreactors. They found some functions are shared, such as the ability to adapt to temperature and oxygen fluctuations. Others are less so; they found a complete denitrification pathway in one microbial species in the CN-SCN processing bioreactor.

Ultimately, this study will provide new approaches for the scientific community towards characterizing microbial communities involved in activities of major interest to DOE, including support of bioenergy feedstock plants, terrestrial carbon cycling, and waste cleanup.

The 2015 call for ETOP Letters of Intent recently ended, but a list of currently supported projects can be viewed here.

Contact

Susannah Tringe
Metagenome Program Head
Deputy, User Programs
DOE Joint Genome Institute
sgtringe@lbl.gov

Funding

  • U.S. Department of Energy Office of Science
  • National Science Foundation
  • Department of Science and Technology and National Research Foundation, South Africa

Publication

  • Kantor RS et al. Bioreactor microbial ecosystems for thiocyanate and cyanide degradation unravelled with genome-resolved metagenomics. Environ Microbiol. 2015 Jul 28. doi: 10.1111/1462-2920.12936.

Related Links

  • http://jgi.doe.gov/doe-joint-genome-institute-expands-capabilities-via-new-partnerships/
  • http://jgi.doe.gov/our-projects/csp-plans/etop-plans/
  • http://jgi.doe.gov/collaborate-with-jgi/other-programs/
  • http://jgi.doe.gov/jillian-banfield-university-of-california-berkeley/

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Science Highlights Tagged With: jgi-metagenome

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

You can move, but you can’t hide

Illustration of a magnifying glass identifying viruses and plasmids.

iPHoP: A Matchmaker for Phages and their Hosts

iPHoP image (Simon Roux)

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.

New Research Sheds Light on Diversity in the Deep Sea

A photo taken in the deep sea. Black clouds billow out of hydrothermal vents.

Sequencing Sphagnum Leads to Discovery of Sex Chromosomes

A photo of two sphagnum species: S. divinum (red) and S. angustifolium (green)]

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California