DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

Our Science
Home › Science Highlights › Scaling Microbial Genomics Discoveries for Ecosystem Modeling

September 5, 2017

Scaling Microbial Genomics Discoveries for Ecosystem Modeling

Nutrient availability in model wetlands helps regulate microbial metabolism and soil carbon cycling rates

The Science

Study co-author Rhonzhong Ye and graduate student Jennifer Morris collecting greenhouse gas fluxes from the rice fields studied on Twitchell Island, CA. (Wyatt Hartman)

Study co-author Rhonzhong Ye and graduate student Jennifer Morris collecting greenhouse gas fluxes from the rice fields studied on Twitchell Island, Calif. (Wyatt Hartman)

Studying microbial communities in San Joaquin Delta rice fields, researchers linked microbial metabolism and nutrient availability to soil carbon cycling rates.

The Impact

Establishing the inter-relationships among microbial metabolism, nutrient availability and soil carbon cycling rates is critical to applying genomic information to understand the global carbon cycle. In showing how microbial metabolism is regulated by coupled nutrient cycling and soil carbon availability, researchers demonstrate how genomics studies of microbial communities can be scaled up to the ecosystems level, which will contribute to a deeper understanding of ecological processes and will aid the development of better global carbon cycling models.

Summary

In order to better understand the relationship between carbon cycling, nutrient availability, and microbial communities in soil it is necessary to conduct studies across a nutrient gradient. Rice fields are model wetland systems that allow researchers to focus on chosen biogeochemical variables, while factors such as water and vegetation are controlled. Adjacent to the Twitchell Island restored wetlands are rice fields with soil carbon contents that can vary between 2.5 percent and 25 percent, covering much of the global range of carbon found in soils. Wetlands are of interest to the U.S. Department of Energy to understand the roles of microbial communities in long-term impacts on carbon emissions and carbon sequestration. These ecosystems can trap as much as 30 percent of global soil carbon but contribute nearly 40 percent of global methane emissions, providing an opportunity to understand their roles as both carbon sinks and carbon sources. Researchers at the Joint Genome Institute, a DOE Office of Science User Facility, studied the ecosystems of Twitchell Island in the Sacramento-San Joaquin Delta, where the U.S. Geological Survey had a pilot study on restored wetlands.

A combination of metagenomic sequencing of soil samples, biogeochemical characterization and weekly greenhouse gas emission measurements led to the team’s results, published in The ISME Journal. The findings suggest that the microbial metabolic rates align with Biological Stoichiometry Theory, a metabolic theory of ecology that suggests organisms with faster growth rates require more phosphorus to increase nitrogen-rich protein synthesis. Until now, this theory had not been applied to soil microbes in situ due to methodological limitations, which the scientists addressed using a novel genomic approach.

Studying the microbial communities in these soils, the researchers found that the rate at which microbes break down organic matter is coupled to the availability of carbon, nitrogen and phosphorus in the soils. Specifically, the availability of phosphorus is a key factor in determining soil carbon cycling rates. An abundance of phosphorus increases microbial activity and metabolic rates, which in turn means higher carbon turnover. Lower phosphorus in high carbon soils may help stabilize accumulated carbon, while high phosphorus soils may more rapidly lose carbon stores. These associations at the ecosystem scale were also reflected in genomic data from the soil microbes which drive soil element cycling. Soil metagenome sequence data were assessed for microbial potential to metabolize carbon, nitrogen and phosphorus, while predictive functional profiling software allowed the researchers to compare tradeoffs in these functions among microbial lineages. This approach revealed clusters of genome sequences that could be grouped into “guilds” based on genomic profiles of metabolic genes, which the researchers used to develop novel predictive models of microbial community composition and soil carbon cycling.  This work is an important advance toward understanding the relationship between microbial communities and soil nutrients and the effects of those interactions on ecosystem activity and health.

BER Contacts

Daniel Drell, Ph.D.
Program Manager
Biological Systems Sciences Division
Office of Biological and Environmental Research
Office of Science
US Department of Energy
daniel.drell@science.doe.gov

Pablo Rabinowicz, Ph.D.
Program Manager
Biological systems Science Division
Office of Biological and Environmental Research
Office of Science
US Department of Energy
pablo.rabinowicz@science.doe.gov

PI Contact

Susannah Tringe
Deputy, User Programs
DOE Joint Genome Institute
sgtringe@lbl.gov

Funding

Work was funded by the DOE Early Career Research Program and conducted by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, supported under contract no. DE-AC02-05CH11231. This material is also based on work supported by the National Institute of Food and Agriculture, US Department of Agriculture.

Publication

  • Hartman WH et al. A genomic perspective on stoichiometric regulation of soil carbon cycling. ISME J. 2017 Jul 21. doi: 10.1038/ismej.2017.115. [Epub ahead of print]

Related Links

  • DOE JGI Science Highlight: “Charting Short-Term Results of Wetlands Restoration”
  • DOE JGI News Release: “JGI’s Susannah Tringe Receives Prestigious $2.5M DOE Early Career Research Award”
  • Susannah Tringe 2012 video: “Wetlands, Microbes, and the Carbon Cycle: Behind the Scenes @ Berkeley Lab”
  • Susannah Tringe 2015 video: “JGI’s Carbon Cycling Studies on Restored Remnant Marshes”

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Science Highlights

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Soil virus offers insight into maintaining microorganisms

Silver age of GOLD introduces new features

Abstract image of gold lights and squares against a black backdrop

Virus Discoveries that Keep Getting Bigger

And illustration of a giant virus in purple and blue tones.

Model fern reveals insight into DNA thievery in ferns

A green fern against a black backdrop

Understanding Wildfire Recovery, Starting in Soil

A photograph of the forest floor, covered in pine needles, with burned trees in the background.

Extracting the Secrets of Secondary Metabolites

A graphic flowchart showing how CRAGE and CRISPR work together
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California