DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

Our Science
Home › Our Science › Science Programs › Fungal & Algal Program › 1000 fungal genomes

1000 fungal genomes

Nominate a genome to sequence

Family level sampling of fungal genomes across the Fungal Tree of Life. a) phylogenetic tree of current classification. b) bar graphs of absolute number of families represented in genomic sampling by class or subphylum. c) bar graphs of percentage of families represented in genomic sampling by class or subphylum. Blue = completed or in progress, Red = proposed for Tier One sampling, Green = remaining unsampled families. A=Ascomycota, B=Basidiomycota. *The four classes represent the most phylogenetically diverse classes of nonlichenized fungi will be Tier One targets for sequencing.

Family level sampling of fungal genomes across the Fungal Tree of Life.
a) phylogenetic tree of current classification.
b) bar graphs of absolute number of families represented in genomic sampling by class or subphylum.
c) bar graphs of percentage of families represented in genomic sampling by class or subphylum.
Blue = completed or in progress, Red = proposed for Tier One sampling, Green = remaining unsampled families.
A=Ascomycota, B=Basidiomycota. *The four classes represent the most phylogenetically diverse classes of nonlichenized fungi will be Tier One targets for sequencing.

With an estimated 1.5 million species, Fungi represent one of the largest branches of the Tree of Life. They have an enormous impact on human affairs and ecosystem functioning, owing to their diverse activities as decomposers, pathogens, and mutualistic symbionts. And perhaps more than any other group of nonphotosynthetic organisms, fungi are essential biological components of the global carbon cycle. Collectively, they are capable of degrading almost any naturally occurring biopolymer and numerous human-made ones. As such, fungi hold considerable promise in the development of alternative fuels, carbon sequestration and bioremediation of contaminated ecosystems.

The use of fungi for the continued benefit of humankind, however, requires an accurate understanding of how they interact in natural and synthetic communities. The ability to sample environments for complex fungal metagenomes is rapidly becoming a reality and will play an important part in harnessing fungi for industrial, energy and climate management purposes. However, our ability to accurately analyze these data relies on well-characterized, foundational reference data of fungal genomes.

To bridge this gap in our understanding of fungal diversity, an international research team in collaboration with the Joint Genome Institute of the Department of Energy has embarked on a five-year project to sequence 1000 fungal genomes from across the Fungal Tree of Life. The team comprises Joseph Spatafora (Oregon State University), Jason Stajich (University of California at Riverside), Kevin McCluskey (Fungal Genetics Stock Center), Pedro Crous (Centraal Bureau voor Schimmelcultures, Netherlands), Gillian Turgeon (Cornell University), Daniel Lindner (USDA Forest Service), Kerry O’Donnell and Todd Ward (USDA ARS), Antonis Rokas (Vanderbilt University), Louise Glass (University of California at Berkeley), Betsy Arnold (University of Arizona), Francis Martin (INRA, France) and Igor Grigoriev (JGI DOE). The overall plan is to fill in gaps in the Fungal Tree of Life by sequencing at least two reference genomes from the more than 500 recognized families of Fungi. In doing so, this project has the core goal of providing reference information to inform research on plant-microbe interactions, microbial emission and capture of greenhouse gasses, and environmental metagenomic sequencing.

1000 Fungal Genomes Community website

  • Plant Program
  • Fungal & Algal Program
    • MycoCosm Fungal Portal
    • PhycoCosm Algal Portal
    • Genomic Encyclopedia of Fungi
    • 1000 fungal genomes
    • Benchmarks
    • Fungal & Algal Publications
  • Metagenome Program
  • Microbial Program
  • DNA Synthesis Science Program
  • Metabolomics Program
  • Secondary Metabolites
MycoCosm, the fungal genomics resource.

MycoCosm, the fungal genomics resource.

PhycoCosm, the algal genomics resource

PhycoCosm, the algal genomics resource.

  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California