DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

News & Publications
Home › News Releases › The Book Opens on the First Tree Genome

September 21, 2004

The Book Opens on the First Tree Genome

treetopsWALNUT CREEK, CA–An international consortium including the U.S. Department of Energy (DOE), Genome Canada, and the Umeå Plant Science Centre in Sweden has released the first complete DNA sequence of a tree, Populus trichocarpa, the Black Cottonwood or poplar, one member of the most ecologically and commercially valuable group of trees in North America. The sequencing was completed at the DOE Joint Genome Institute Production Genomics Facility.

“By helping to lead this international collaboration to sequence the first tree genome, DOE once again is pioneering discovery-class science that promises to yield important societal benefits,” said Secretary of Energy Spencer Abraham. “The poplar genome sequence will provide researchers with a critical resource to develop faster growing trees, trees that produce more biomass that can be converted to fuels, and trees that can sequester more carbon from the atmosphere or be used to clean up waste sites. Just as DOE earlier played a leading role in mapping the human genome and making possible advances in human health, we now are pleased to build on that success and help deliver the poplar’s parts list–and the clean energy and cleaner environment that scientists will produce using the genetic sequence of the poplar in the future.”

“Forest genomics is rapidly shaping how we do sustainable, intensive forestry,” said David L. Emerson, Canada’s Minister of Industry. “The complete poplar code provides us with the starting material for understanding factors that control the essential traits of trees that fuel our forest economy. It will help us farm trees with desired growth and wood quality characteristics while protecting our forests from pests and diseases through the development of tools for early detection, diagnosis, and control, allowing for more vigilant conservation and forest management.”

The Biological and Environmental Research program in the Department of Energy’s Office of Science has provided a total of $12 million for the poplar initiative, including $8 million for sequencing and $4 million for associated research. The two-year project was coordinated out of the DOE’s Oak Ridge National Laboratory (ORNL) in Tennessee and powered by the sequencing engine of the DOE Joint Genome Institute. The partnership includes Genome Canada, through Genome British Columbia and the University of British Columbia, and the BC Cancer Agency Michael Smith Genome Sciences Centre, which jointly implemented vital DNA mapping, sequencing, and fingerprinting strategies. Genome Canada and Genome BC have invested a total of $10.8 million CDN in the British Columbia Forestry Genomics project, of which $2 million CDN were dedicated to the poplar initiative. The primary European partner, Sweden’s Umeå Plant Science Centre, collected an expressed sequence tag (EST) resource necessary for accurate gene prediction. The total investment in the Swedish Populus program exceeds $10 million, $3 million of which is directly connected to the genome sequencing effort. Stanford University served as an integral part of JGI’s sequence finishing and quality control operation. Ghent University (Belgium) played an increasing role in annotating the sequence that has been generated.

With a genome consisting of more than 480 million letters of genetic code, Populus trichocarpa was sequenced eight times over to attain the highest quality standards. Poplar was chosen as the first tree DNA sequence decoded because of its relatively compact genetic complement, some 40 times smaller than the genome of pine, making the poplar an ideal model system for trees. The poplar genome, divided into 19 chromosomes, is four times larger than the genome of the first plant sequenced four years ago, Arabidopsis thaliana, the tiny workhorse for plant molecular geneticists.

“Although we’re still in the early stages of analyzing the poplar genome, in our first pass we found more than 40,000 genes, most with significant relatedness to genes in other plants,” said Daniel Rokhsar, JGI computational genomics department head. “The trick will be in figuring out how these similar gene sets have been customized and redeployed in poplar to generate a large woody plant instead of a small weed. We’re currently comparing the poplar sequence with the genomes of rice and Arabidopsis to shed light on the evolution of these genes to see how they are differentially regulated in these diverse plants,” Rokhsar said. The poplar consortium researchers plan to publish the results of their analysis early next year.

“Carbon management issues are overwhelming, but poplar trees could play a significant role in the solution,” said Gerald Tuskan, whose team at the ORNL leads the poplar research effort. “Trees have a built-in mechanism for storing captured carbon dioxide in their leaves, branches, stems, and roots. This natural process of carbon sequestration suggests opportunities to further clean up the air by engineering trees so that they would more effectively shuttle and store more carbon below ground in their roots and the soil.” Joining Tuskan on the ORNL poplar team are Steve DiFazio, Tongming Yin, Frank Larimer, Lee Gunter, Gwo-Liang Chen, and Phil Locascio. JGI contributors include Daniel Rokhsar, Nik Putman, Igor Grigoriev, Paul Richardson, and Susan Lucas, who manages JGI’s production sequencing operation.

“This achievement will have a huge impact on research far beyond the field of forestry,” said Stefan Jansson at Umeå Plant Science Centre. Plant scientists throughout the world now have a tree model system to work with in addition to the already established models of Arabidopsis and rice. The many unique properties of trees, for example wood formation, longevity, seasonal growth, and hardiness patterns, mean that Populus now can be used to study many fundamental biological questions.” Joining Jansson in leading the Swedish poplar team are Jan Karlsson, Goeran Sandberg, and Fredrik Sterky.

“The sequencing is extremely valuable because attributes found in the poplar model will also be applicable to other trees,” added Don Riddle, Chief Scientific Officer of Genome British Columbia, on behalf of the four principal investigators of the Canadian component of the research. “Forestry is an integral part of Canada’s economy–for industry, ecology, and recreation. Despite increasing pressure on forestry resources through human demand, pest outbreaks, and global climate change, tree breeding for improved yield, quality, and pest resistance is still in its infancy. This research will help provide a solid base in tree genomics to advance biological knowledge and aid breeding programs.” The Canadian research team was led by Carl Douglas, Kermit Ritland, Joerg Bohlmann, and Brian Ellis from the University of British Columbia.

The genome browser, developed by JGI and accessible at http://www.jgi.doe.gov/poplar, is the repository for all the poplar sequence information. As a complement, a Swedish database with Populus gene expression information is also made available and can be accessed at www.populus.db.umu.se.

On September 22, Stefan Jansson from the Umeå Plant Science Centre will highlight the poplar work at the third Plant Genomics European Meeting, in Lyon, France.

On October 11, the poplar genome resource will be introduced to an international community of plant geneticists and ecologists. Consortium members Steve DiFazio and Pierre Rouzeé will present at the symposium “Functional Genomics of Environmental Adaptation in Populus” in Gatlinburg, Tennessee, cosponsored by DOE and Phytologist Trust.

In December, the JGI will host a “Poplar Annotation Jamboree” that will assemble the international community tasked with extracting the particular functions of the annotated gene set and highlighting other valuable motifs to further populate the publicly-accessible poplar database. A tutorial can be arranged on the use of the poplar genome browser through the contact below*.

See the backgrounder for facts about forest trees.

For additional information about the major poplar genome partners, see the following:

The International Populus Genome Consortium: http://www.ornl.gov/sci/ipgc/
Contact: Gerald Tuskan, 865-576-8141; gtk@ornl.gov

Oak Ridge National Laboratory: http://www.ornl.gov
Ron Walli, 865-576-0226; wallira@ornl.gov

DOE Joint Genome Institute: http://www.jgi.doe.gov
*Contact: David Gilbert, 925-296-5643; gilbert21@llnl.gov

Genome Canada: http://www.genomecanada.ca/
Contact: Anie Perrault, 613-751-4460, ext. 13; aperrault@GENOMECANADA.CA

Genome British Columbia: http://www.genomebc.ca/
Contact: Linda Bartz, 604-637-4373; lbartz@genomebc.ca

Umeå Plant Science Centre
Contact: Stefan Jansson, +46-90-7865354; stefan.jansson@plantphys.umu.se

Stanford Human Genome Center: http://www-shgc.stanford.edu
Contact: Ruthann Richter, 650-725-3900; richter1@stanford.edu

Department of Plant Systems Biology and INRA-associated laboratory at Ghent University: http://www.psb.ugent.be/
Contact: Yves Van de Peer, +32 (0)9-331-3807; yves.vandepeer@psb.ugent.be
Contact: Pierre Rouzé, +32 476 638 304; pierre.rouze@psb.ugent.be

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases, Poplar

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

You can move, but you can’t hide

Illustration of a magnifying glass identifying viruses and plasmids.

JGI announces second round of 2023 New Investigator awardees

From left to right: [above] Emma Bell, Mallory Choudoir, Sneha Couvillion, Tobin Hammer, Christina Hazard, Rachel Mackelprang, Brook Moyers, Mei, Ran,; [below] Benjamin Peterson, Dacheng Ren, Allison Rober, Neal Scott, Chikae Tatsumi, Vojtech Tlaskal, Fernando Torralbo, Luis Felipe Valdez-Nuñez

A Collaboration to Improve Plant Genome Annotations Across Species

A tiled collage of square photos of different plants - soybeans, and sorghum, for example.

From Berkeley to Binghamton: Tracking Strawberry Evolution

iPHoP: A Matchmaker for Phages and their Hosts

iPHoP image (Simon Roux)

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California