DOE Joint Genome Institute

  • COVID-19
  • About
  • Phones
  • Contacts
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Products
    • Science Highlights
    • Scientists
    Maize can produce a cocktail of antibiotics with a handful of enzymes. (Sam Fentress, CC BY-SA 2.0)
    How Maize Makes An Antibiotic Cocktail
    Zealexins are produced in every corn variety and protect maize by fending off fungal and microbial infections using surprisingly few enzymes.

    More

    The genome of the common fiber vase or Thelephora terrestris was among those used in the study. (Francis Martin)
    From Competition to Cooperation
    By comparing 135 fungal sequenced genomes, researchers were able to carry out a broader analysis than had ever been done before to look at how saprotrophs have transitioned to the symbiotic lifestyle.

    More

    Miscanthus grasses. (Roy Kaltschmidt/Berkeley Lab)
    A Grass Model to Help Improve Giant Miscanthus
    The reference genome for M. sinensis, and the associated genomic tools, allows Miscanthus to both inform and benefit from breeding programs of related candidate bioenergy feedstock crops such as sugarcane and sorghum.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Poplar (Populus trichocarpa and P. deltoides) grow in the Advanced Plant Phenotyping Laboratory (APPL) at Oak Ridge National Laboratory in Tennessee. Poplar is an important biofuel feedstock, and Populus trichocarpa is the first tree species to have its genome sequenced — a feat accomplished by JGI. (Image courtesy of Oak Ridge National Laboratory, U.S. Dept. of Energy)
    Podcast: Xiaohan Yang on A Plantiful Future
    Building off plant genomics collaborations between the JGI and Oak Ridge National Laboratory, Xiaohan Yang envisions customizing plants for the benefit of human society.

    More:

    Expansin complex with cell wall in background. (Courtesy of Daniel Cosgrove)
    Synthesizing Microbial Expansins with Unusual Activities
    Expansin proteins from diverse microbes have potential uses in deconstructing lignocellulosic biomass for conversion to renewable biofuels, nanocellulosic fibers, and commodity biochemicals.

    Read more

    High oleic pennycress. (Courtesy of Ratan Chopra)
    Pennycress – A Solution for Global Food Security, Renewable Energy and Ecosystem Benefits
    Pennycress (Thlaspi arvense) is under development as a winter annual oilseed bioenergy crop. It could produce up to 3 billion gallons of seed oil annually while reducing soil erosion and fertilizer runoff.

    Read more

  • Data & Tools
    • IMG
    • Genome Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Artistic interpretation of CheckV assessing virus genome sequences from environmental samples. (Rendered by Zosia Rostomian​, Berkeley Lab)
    An Automated Tool for Assessing Virus Data Quality
    CheckV can be broadly utilized by the research community to gauge virus data quality and will help researchers to follow best practices and guidelines for providing the minimum amount of information for an uncultivated virus genome.

    More

    Unicellular algae in the Chlorella genus, magnified 1300x. (Andrei Savitsky)
    A One-Stop Shop for Analyzing Algal Genomes
    The PhycoCosm data portal is an interactive browser that allows algal scientists and enthusiasts to look deep into more than 100 algal genomes, compare them, and visualize supporting experimental data.

    More

    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Podcast: A Primer on Genome Mining
    In Natural Prodcast: the basics of genome mining, and how JGI researchers conducted it in IMG/ABC on thousands of metagenome-derived genomes for a Nature Biotechnology paper.

    Read more

  • User Programs
    • Calls for User Proposals
    • Special Initiatives & Programs
    • User Support
    • Submit a Proposal
    Scanning electron micrographs of diverse diatoms. (Credits: Diana Sarno, Marina Montresor, Nicole Poulsen, Gerhard Dieckmann)
    Learn About the Approved 2021 Large-Scale CSP Proposals
    A total of 27 proposals have been approved through JGI's annual Community Science Program (CSP) call. For the first time, 63 percent of the accepted proposals come from researchers who have not previously been a principal investigator on an approved JGI proposal.

    Read more

    MiddleGaylor Michael Beman UC Merced
    How to Successfully Apply for a CSP Proposal
    Reach out to JGI staff for feedback before submitting a proposal. Be sure to describe in detail what you will do with the data.

    Read more

    Click on the image or go here to watch the video "Enriching target populations for genomic analyses using HCR-FISH" from the journal Microbiome describing the research.
    How to Target a Microbial Needle within a Community Haystack
    Enabled by the JGI’s Emerging Technologies Opportunity Program, researchers have developed, tested and deployed a pipeline to first target cells from communities of uncultivated microbes, and then efficiently retrieve and characterize their genomes.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Publications
    • Scientific Posters
    • Newsletter
    • Logos and Templates
    • Photos
    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Uncovering Novel Genomes from Earth’s Microbiomes
    A public repository of 52,515 microbial draft genomes generated from environmental samples around the world, expanding the known diversity of bacteria and archaea by 44%, is now available .

    More

    Green millet (Setaria viridis) plant collected in the wild. (Courtesy of the Kellogg lab)
    Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet
    In Nature Biotechnology, a very high quality reference Setaria viridis genome was sequenced, and for the first time in wild populations, a gene related to seed dispersal was identified.

    More

    The Brachypodium distachyon-B. stacei-B. hybridum polyploid model complex. (Illustrations credits: Juan Luis Castillo)
    The More the Merrier: Making the Case for Plant Pan-genomes
    Crop breeders have harnessed polyploidy to increase fruit and flower size, and confer stress tolerance traits. Using a Brachypodium model system, researchers have sought to learn the origins, evolution and development of plant polyploids. The work recently appeared in Nature Communications.

    Read more

News & Publications
Home › News Releases › The First Tree Genome is Published

September 14, 2006

The First Tree Genome is Published

WALNUT CREEK, CA–Wood from a common tree may one day factor prominently in meeting transportation fuel needs, according to scientists whose research on the fast-growing poplar tree is featured on the cover of tomorrow’s edition of the journal Science.

poplar on Science 2006 cover

The poplar study on the cover of the September 15, 2006 edition of Science. Because this tree has a small genome and has long been the subject of commercial and ecological studies, P. trichocarpa was selected as the first woody perennial plant to have its genome sequenced.

The article, highlighting the analysis of the first complete DNA sequence of a tree, the black cottonwood or Populus trichocarpa, lays the groundwork that may lead to the development of trees as an ideal “feedstock” for a new generation of biofuels such as cellulosic ethanol. The research is the result of a four-year scientific and technical effort, led by the U.S. Department of Energy’s Joint Genome Institute (DOE JGI) and Oak Ridge National Laboratory (ORNL), uniting the efforts of 34 institutions from around the world, including the University of British Columbia, and Genome Canada; Umeå Plant Science Centre, Sweden; and Ghent University, Belgium.

“Biofuels could provide a major answer to our energy needs by giving the United States a homegrown, environmentally friendlier alternative to imported oil,” said DOE’s Under Secretary for Science Dr. Raymond L. Orbach. “Fine-tuning plants for biofuels production is one of the keys to making biofuels economically viable and cost-effective. This research, employing the latest genomic technologies, is an important step on the road to developing practical, biologically-based substitutes for gasoline and other fossil fuels.”

“Biofuels are not only attractive for their potential to cut reliance on oil imports but also their reduced environmental impact,” said Dr. Gerald A. Tuskan, ORNL and DOE JGI researcher and lead author of the Science study. “Biofuels emit fewer pollutants than fossil fuels such as gasoline. In addition, poplar and related plants are vital managers of atmospheric carbon. Trees store captured carbon dioxide in their leaves, branches, stems, and roots. This natural process provides opportunities to improve carbon removal from the air by producing trees that effectively shuttle and store more carbon below ground in their roots and the soil. Moreover, bioenergy crops re-absorb carbon dioxide emitted when biofuels are consumed, creating a cycle that is essentially carbon neutral.”

Poplar’s extraordinarily rapid growth, and its relatively compact genome size of 480 million nucleotide units, 40 times smaller than the genome of pine, are among the many features that led researchers to target poplar as a model crop for biofuels production.

“Under optimal conditions, poplars can add a dozen feet of growth each year and reach maturity in as few as four years, permitting selective breeding for large-scale sustainable plantation forestry,” said Dr. Sam Foster of the U.S. Forest Service. “This rapid growth coupled with conversion of the lignocellulosic portion of the plant to ethanol has the potential to provide a renewable energy resource along with a reduction of greenhouse gases.”

“The challenge of global warming requires global solutions,” said Martin Godbout, President, Genome Canada. “The international consortium that successfully sequenced the poplar genome provides a model for great minds working together and serves as an example of how discovery science can be applied to current environmental problems facing humanity.”

Among the major discoveries yielded from the poplar project is the identification of over 45,000 protein-coding genes, more than any other organism sequenced to date, approximately twice as many as present in the human genome (which has a genome six times larger than the poplar’s). The research team identified 93 genes associated with the production of cellulose, hemicellulose and lignin, the building blocks of plant cell walls. The biopolymers cellulose and hemicellulose constitute the most abundant organic materials on earth, which by enzymatic action, can be broken down into sugars that in turn can be fermented into alcohol and distilled to yield fuel-quality ethanol and other liquid fuels.

Poplar is the most complex genome to be sequenced and assembled by a single public sequencing facility and only the third plant to date to have its genome completely sequenced and published. The first, back in 2000, was the tiny weed, Arabidopsis thaliana, an important model for plant genetics. Rice was the second, two years ago. Populus trichocarpa is one of the tallest broadleaf hardwood trees in the western U.S., native to the Pacific coast from San Diego to Alaska. The sequenced DNA was isolated from a specimen collected along the banks of the Nisqually river in Washington State.

The poplar project supports a broader DOE drive to accelerate research into biofuels production, under the Bush Administration’s Advanced Energy Initiative. In August, the department announced it would spend $250 million over five years to establish and operate two new Bioenergy Research Centers. The DOE-supported research into biofuels is focusing on both plants and microbes, in an effort to discover new biotechnology-based methods of producing fuels from plant matter (biomass) cost-effectively.

Earlier this year, DOE published a study summarizing the views of over fifty leading scientists in the field of biofuels research that expressed optimism about the prospects for finding cost-effective methods to produce fuels such as ethanol from cellulose in the not-too-distant future (Breaking the Biological Barriers to Cellulosic Ethanol). Secretary of Energy Samuel W. Bodman has set a departmental goal of replacing 30 percent of current transportation fuel demand with biofuels by 2030.

DOE scientists envision a future where vast poplar farms in regions such as the Pacific Northwest, the upper Midwest, and portions of the southeastern U.S. could provide a steady supply of tree biomass rich in cellulose that can be transformed by specialized biorefineries into fuels like ethanol. Other regions of the country might specialize in different “energy crops” suited to their particular climate and soil conditions, including such plants as switchgrass and willow. In addition, a large quantity of biofuels might be produced from agricultural and forestry waste.

A 2005 joint study by DOE and the U.S. Department of Agriculture found that the United States has enough agricultural and forestry land to support production of over one billion tons of biomass, which could provide enough liquid biofuels to replace over a third of current transportation fuel consumption, and still continue to meet food, feed, and export demands (Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply).

The DOE Joint Genome Institute, supported by the DOE Office of Science, unites the expertise of five national laboratories, Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, and Pacific Northwest, along with the Stanford Human Genome Center to advance genomics in support of the DOE mission related to clean energy generation and environmental characterization and clean-up. DOE JGI’s Walnut Creek, Calif. Production Genomics Facility provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Podcasts
  • CSP Plans
  • Featured Profiles

Related Content:

An Automated Tool for Assessing Virus Data Quality

Artistic interpretation of CheckV assessing virus genome sequences from environmental samples. (Rendered by Zosia Rostomian​, Berkeley Lab)

A One-Stop Shop for Analyzing Algal Genomes

Unicellular algae in the Chlorella genus, magnified 1300x. (Andrei Savitsky)

Uncovering Novel Genomes from Earth’s Microbiomes

Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)

2021 JGI Proposal Call Brings New Investigators into Community Science Program

Scanning electron micrographs of diverse diatoms. (Credits: Diana Sarno, Marina Montresor, Nicole Poulsen, Gerhard Dieckmann)

Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet

Green millet (Setaria viridis) plant collected in the wild. (Courtesy of the Kellogg lab)

The More the Merrier: Making the Case for Plant Pan-genomes

Brachypodium distachyon, the model species for temperate cereals and biofuel crop grasses with a growing pangenome of one hundred genomes. Spain: Huesca, Ibieca, San Miguel de Foces. (Photography credits: Pilar Catalán)
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Emergency Info
  • Accessibility / Section 508 Statement
  • RSS feed
  • Flickr
  • LinkedIn
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2021 The Regents of the University of California