DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › A First Line of Defense Against Disease Organisms

May 7, 2002

A First Line of Defense Against Disease Organisms

WALNUT CREEK, CA — The Department of Energy’s Joint Genome Institute (JGI), whose Production Genomics Facility in Walnut Creek is one of the fastest and most powerful in the U.S., has been enlisted to help safeguard public safety by determining the whole genome sequences of a variety of infectious bacteria–a first step toward developing tests that can be used to rapidly identify their presence in the environment.

While the anthrax strains used in recent bioterrorist attacks could be identified, there are no field tests for dozens of other potentially dangerous microbes. To develop new tests and improve existing ones, knowing the whole genomic sequence of each organism and its close relatives can be vitally important. JGI is ideally suited to this effort because of its capacity and depth of experience in sequencing microorganisms. In a little over three years JGI has sequenced scores of microbes; last year it sequenced 15 bacteria in a single month and today is capable of sequencing an average microbe’s genome twice over in a single day.

Starting May 7, 2002, JGI’s Production Genomics Facility (PGF) will determine draft genome sequences of several bacteria already under study at Lawrence Livermore and Los Alamos National Laboratories. JGI was founded in 1997 by these two laboratories and Lawrence Berkeley National Laboratory; all three laboratories are managed for the Department of Energy by the University of California.

The first pathogens to be sequenced under the current program are members of the Bacillus, Brucella, Clostridium, Francisella, Shigella, and Yersinia groups. In many of these groups, several strains or related species will be sequenced, for example, two strains of Bacillus anthracis (anthrax) and one of the similar species Bacillus thuringiensis.

Depending on how quickly the organisms become available, JGI plans to sequence the whole genomes of many more potentially hazardous bacteria and a number of their less harmful relatives.

Sequencing at JGI will not involve actual pathogens. Whole organisms will be received and handled at laboratories equipped with appropriate containment facilities, like those in place at Livermore and Los Alamos, where the DNA of each pathogen will be reduced to fragments to be sent in a disassembled state to JGI’s Production Genomics Facility.

The genome of a typical bacterium is a circular piece of DNA containing approximately two to five million “base pairs”–pairs of the chemical bases, integral to the DNA molecule, that form the letters of the genetic code. Genomes from millions of individual bacteria are fragmented to create a library of random pieces each about two to three thousand base pairs long. Each fragment represents only about 0.0005 percent of the complete genome.

Because intact genomes are not involved, the Centers for Disease Control and Prevention have registered the PGF to receive this fragmentary DNA with no change in standard procedures. The PGF will work with multiple copies of each fragment. Automated equipment determines the exact sequence of bases on each strand. The data is then assembled by a computer program to reconstruct the order of the bases in the whole genome.

The completed sequence exists only as a string of letters in a computer’s output. No physical genomes will be handled at JGI, and the standard laboratory strain of E. coli in which individual DNA fragments are reproduced will be disposed of after sterilization, according to the standard operating procedures of the PGF. Draft sequences will be shared with Los Alamos and Lawrence Livermore laboratories for finishing and annotation.

JGI has been a leader in sequencing organisms of crucial interest to researchers around the world. For the Human Genome Project, JGI sequenced human chromosomes 5, 16, and 19, which together constitute some 11 percent of the human genome. JGI sequenced mouse DNA related to human chromosome 19 to illuminate the molecular evolutionary history of the two species. Working with an international consortium of universities and industry, JGI participated in the sequencing of the gene-rich puffer fish (Fugu rubripes). The 165-million base-pair genome of the sea squirt (Ciona intestinalis) was sequenced jointly by JGI, Japan’s National Institute of Genetics, and Kyoto University. JGI has also sequenced the environmentally important white rot fungus (Phanerochaete chrysosporium) and over 50 important microorganisms.

The Joint Genome Institute is one of the largest publicly funded human genome sequencing institutions in the world. With its main headquarters and Production Genomics Facility in Walnut Creek, JGI employs about 240 people and has programs in genomic sequencing, computation, functional genomics, genomic diversity, and new technology development. Funding is provided predominantly by the Department of Energy’s Office of Science; other agencies that have contributed to funding JGI include DOE’s National Nuclear Security Administration, the National Institutes of Health, the National Science Foundation, and the U.S. Department of Agriculture

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Introducing New Members of the JGI User Executive Committee

incoming 2023 UEC members

JGI Contributes Nine to 2022 Highly Cited Researchers List

Nine headshots, one for each researcher, laid out beside a purple ribbon reading, "Home to Highly Cited Researchers 2022 Clarivate"

JGI announces first round of 2023 New Investigator awardees

Digital ID card with 10 headshots reads: Congratulations to our 2023 New Investigator recipients!

JGI at 25: Following Fungi that Pry Apart Plant Polymers

A brown goat with white horns looks at green hay

Exploring Possibilities: 2022 JGI-UC Merced Interns

2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)

JGI at 25: Using team science to build communities around data

  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California