DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

    Algae growing in a bioreactor. (Dennis Schroeder, NREL)
    Refining the Process of Identifying Algae Biotechnology Candidates
    Researchers combined expertise at the National Labs to screen, characterize, sequence and then analyze the genomes and multi-omics datasets for algae that can be used for large-scale production of biofuels and bioproducts.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

    Ian Rambo, graduate student at UT-Austin, was a DOE Graduate Student Research Fellow at the JGI
    Virus-Microbe Interactions of Mud Island Mangroves
    Through the DOE Office of Science Graduate Student Research (SCGSR) program, Ian Rambo worked on part of his dissertation at the JGI. The chapter focuses on how viruses influence carbon cycling in coastal mangroves.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

    Integrating JGI Capabilities for Exploring Earth’s Secondary Metabolome
    Natural Prodcast podcast: Nigel Mouncey
    JGI Director Nigel Mouncey has a vision to build out an integrative genomics approach to looking at the interactions of organisms and environments. He also sees secondary metabolism analysis and research as a driver for novel technologies that can serve all JGI users.

    More

News & Publications
Home › News Releases › DOE JGI Community Sequencing Program Delivers First Moss Genome

December 13, 2007

DOE JGI Community Sequencing Program Delivers First Moss Genome

WALNUT CREEK, CA–Messages from nearly a half-billion years ago, conveyed via the inventory of genes sequenced from a present-day moss, provide clues about the earliest colonization of dry land by plants. The U.S. Department of Energy Joint Genome Institute (DOE JGI) was among the leaders of an international effort uniting more than 40 institutions to complete the first genome sequencing project of a nonvascular land plant, the moss Physcomitrella patens. The team’s insights into the code that enabled this seminal emergence and dominance of land by plants are published December 13 online in Science Express.

scan-em-gametophores

Scanning electron micrograph of Physcomitrella patens gametophores (moss shoots). Courtesy of John Doonan, The John Innes Centre, Norwich, UK.

The moss genome project, originally proposed by Brent Mishler of the University of California, Berkeley, and Ralph Quatrano of Washington University in St. Louis (WUSTL), was enabled through DOE JGI’s Community Sequencing Program (CSP). Other project leaders include DOE JGI’s Jeffrey Boore, David Cove and Andrew Cuming of the University of Leeds (United Kingdom), Mitsuyasu Hasebe and Tomoaki Nishiyama of the National Institute for Basic Biology (Japan), and Ralf Reski of the University of Freiburg (Germany) with his associate Stefan Rensing, the paper’s first author.

“Physcomitrella is to flowering plants what the fruit fly is to humans; that is, in the same way that the fly and mouse have informed animal biology, the genome of this moss will advance our exploration of plant genes and their functions and utility,” said Eddy Rubin, DOE JGI Director. “Traits such as those that allow plants to survive and thrive on dry land, will be useful in the selection and optimization of crops that may be domesticated for biomass-to-biofuels strategies.”

Physcomitrella, with a genome of just under 500 million nucleotides and possessing nearly 36,000 genes (about 50% more than are thought to be in the human genome), is the first bryophyte to be sequenced. Bryophytes are nonvascular land plants that lack specialized tissues (phloem or xylem) for circulating fluids. Rather, they possess specialized tissues for internal transport. They neither flower nor produce seeds, but reproduce via spores.

“The availability of the Physcomitrella genome is expected to create important new opportunities for understanding the molecular mechanisms involved in plant cell wall synthesis and assembly,” said Chris Somerville, Director of the Energy Biosciences Institute (EBI), the partnership between Lawrence Berkeley National Laboratory, U.C. Berkeley, the University of Illinois at Urbana-Champaign, and the global energy company BP. “The ease with which genes can be experimentally modified in Physcomitrella will facilitate a wide range of studies of the cell wall, the principal component of terrestrial biomass. Additionally, the moss has fewer cell types than higher plants and has a much more rapid lifecycle, which also greatly facilitates experimental studies of cell walls. Thus, the completion of the genome is an important step forward in facilitating basic research concerning the development of cellulosic biofuels.”

“There is a clear connection with this work and the intensifying interest in the global carbon cycle,” said Mishler, a U.C Berkeley Professor in the Department of Integrative Biology and Director of the University and Jepson Herbaria. “The moss system is proving quite useful for studies of photosynthesis among many other processes.”

One of these, said Quatrano, who is Chairman of the Department of Biology at WUSTL, “is the ability of mosses to withstand drought and in some cases complete desiccation, which will provide us with a model experimental system to identify genes and gene networks that might be involved and related to seed desiccation in flowering plants.”

Mishler said that Physcomitrella is well placed phylogenetically to fill in the large gap between the unicellular green alga Chlamydomonas, also sequenced by DOE JGI, and the flowering plants.

“Having the full Physcomitrella genome available to the public greatly advances bioinformatic comparisons and functional genomics in plants,” said Mishler. “This is a great example of how phylogenetics can integrate with functional and applied studies.”

“Furthermore,” Quatrano said, “unlike vascular plant systems, we can target and delete specific moss genes to study their function in important crop processes, and replace them with genes from crop plants to allow us to study the evolution of gene function. In addition to the genome, extensive genomic tools are now available in Physcomitrella to study comparative gene function and evolution as related to bioenergy and other processes of importance to crops.” These tools can be found at: www.mossgenome.org.

DOE JGI’s Community Sequencing Program (CSP) provides the scientific community at large with access to high-throughput sequencing by DOE JGI for projects of relevance to DOE missions in bioenergy, carbon cycling, and bioremediation. Sequencing projects are chosen based on scientific merit, judged through independent peer review. Currently, letters of intent for CSP FY2009 sequencing allocation are being solicited. More information can be found at http://www.jgi.doe.gov/CSP/index.html

Other DOE JGI authors on the study include Astrid Terry, Asaf Salamov, Harris Shapiro, Erika Lindquist, Hank Tu, Susan Lucas, and Igor Grigoriev.

The U.S. Department of Energy Joint Genome Institute, supported by the DOE Office of Science, unites the expertise of five national laboratories–Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, and Pacific Northwest–along with the Stanford Human Genome Center to advance genomics in support of the DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI’s Walnut Creek, CA, Production Genomics Facility provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

SPRUCE-ing Up Science

mentors and interns for JGI-UC Merced internship program

JGI at 25: Studying Sorghum’s Survival Skills

A graphic showing citations of the Sorghum bicolor reference genome

Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts

Single filament of Ca. Thiomargarita magnifica (Jean-Marie Volland)

Polar Phytoplankton Need Zinc to Cope with the Cold

Photograph of a stream of diatoms beneath Arctic sea ice.

JGI at 25: Solving the Mystery of the Missing Oil

A surface slick in the Gulf of Mexico, taken ~1.5 km from the Deepwater Horizon wellhead (Olivia Mason, LBNL).

JGI at 25: The Human Genome Project, or the JGI’s Origin Story

JGI contributions detailed in DOE Human Genome Project poster
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2022 The Regents of the University of California