DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › Tiny Algae Shed Light on Photosynthesis as a Dynamic Property

November 28, 2012

Tiny Algae Shed Light on Photosynthesis as a Dynamic Property

news_12_11_28-1

Primary and secondary endosymbiosis is depicted in this diagram, which shows movement of DNA from the cyanobacterial progenitor of plastids to the primary host nucleus and, subsequently, to the nucleus of the secondary host. (John M. Archibald, Dalhousie University, Canada)

One of the first chemical reactions children learn is the recipe for photosynthesis, combining carbon dioxide, water and solar energy to produce organic compounds. Many of the world’s most important photosynthetic eukaryotes such as plants did not develop the ability to combine these ingredients themselves. Rather, they got their light-harnessing organelles—chloroplasts—indirectly by stealing them from other organisms. In some instances, this has resulted in algae with multiple, distinct genomes, the evolutionary equivalent of a “turducken*.”

Chloroplasts originally evolved from photosynthetic bacteria by primary endosymbiosis, in which a bacterium or other prokaryote is engulfed by a eukaryotic host. The chloroplasts of red and green algae have subsequently come to reside within other, previously non-photosynthetic eukaryotes by secondary endosymbiosis. Such events have contributed to the global diversity of photosynthetic organisms that play a crucial role in regulating and maintaining the global carbon cycle. In most organisms that acquired photosynthesis by this mechanism, the nucleus from the ingested algal cell has disappeared, but in some cases it persists as a residual organelle known as a nucleomorph. Such organisms have four distinct genomes.

To better understand the process of secondary endosymbiosis and why nucleomorphs persist in some organisms, an international team composed of 73 researchers at 27 institutions, including the U.S. Department of Energy Joint Genome Institute (DOE JGI), collaborated to sequence and analyze the genomes and transcriptomes (the expressed genes) of two tiny algae. The team led by John Archibald of Canada’s Dalhousie University published their findings on the algae Bigelowellia natans and Guillardia theta ahead online November 29, 2012 in Nature.

Archibald compared these algae to Russian nesting dolls with “sophisticated sub-cellular protein-targeting machinery” and four genomes derived from the two eukaryotes that merged over time. Approximately 50 percent of the genes in both genomes are ‘unique’ with no obvious counterpart in other organisms,” he added. “This indicates just how different they are from characterized species.”

news_12_11_28-2

SEM of the endosymbiotic algae G. theta the first cryptophyte to be sequenced.
(Dr. Geoff McFadden, University of Melbourne, Australia)

DOE JGI Fungal Genomics Program head Igor Grigoriev called B. natans and G. theta “living fossils” because of the remnant nucleomorph. He added that algae are relevant to the Department of Energy Office of Science research portfolio for their potential applications in the fields of bioenergy and environment, noting that the DOE JGI has published over 75 percent of the publicly available algal genomes. “Iterations of endosymbiosis have led to a global diversity of these primary producers. Sequencing these two algae, the first cryptophyte and the first chlorarachniophyte sequenced, helped us to fill in the gaps in the Eukaryotic Tree of Life, and obtain additional references for better understanding of eukaryotic evolution.”

Archibald said that “G. theta and B. natans both possess a surprisingly complex suite of enzymes involved in carbon metabolism, and thus represent a useful resource for scientists engaged in both basic and applied research, including photosynthesis, sub-cellular trafficking and biofuels development.”

The DOE JGI sequenced the genomes of B. natans (95 million nucleotides or bases: Mb) and G. theta (87 Mb) from single cell isolates provided by Bigelow Laboratory for Ocean Sciences as part of the 2007 Community Sequencing Program portfolio. In addition, the transcriptomes were sequenced separately by the National Center for Genome Resources in New Mexico. Among the team’s findings is an answer to the question of why nucleomorphs still exist.

“The reason for the persistence of nucleomorphs in both organisms appears to be surprisingly simple: they are no longer able to transfer their DNA to the host cell nucleus by the process of endosymbiotic gene transfer,” said Archibald. Unlike most other secondarily photosynthetic eukaryotes in which the endosymbiont’s genetic matter has completely migrated over to the host, in cryptophytes and chlorarachniophytes the nucleus and chloroplast from the engulfed algae remain partitioned off from the host cell. “As a consequence,” he added,“ genetic and biochemical mosaicism is rampant in G. theta and B. natans.”

Both researchers highlighted the unexpected finding of alternative splicing in B. natans. Grigoriev noted that the phenomenon is one typical for higher eukaryotes, and Archibald added that the levels “greatly exceed that seen in the model plant Arabidopsis and on par with the human cerebral cortex, unprecedented and truly remarkable for a unicellular organism. This challenges the paradigm that complex alternative splicing is a phenomenon limited to sophisticated multicellular organisms.”

news_12_11_28-3

SEM of B. natans the first chlorarachniophyte to be sequenced. (Dr. Geoff McFadden, University of Melbourne, Australia)

“The evolution of chloroplasts, the photosynthetic compartments of plants and algal cells, is complex but has had a profound effect on our planet,” said Chris Howe, Professor of Plant and Microbial Biochemistry at Cambridge University in England. “This paper gives us fascinating insights into how host and nucleomorph genomes have been remodeled during evolution. As well as providing a goldmine of information on the general biology of these organisms, the paper shows us that the nucleomorph genomes have probably persisted simply because the mechanism for transfer of genes to the nucleus was closed off, rather than because nucleomorphs had to be retained as separate entities. The paper also shows us that the evolutionary history of the nucleomorph-containing organisms was even more complex than we thought, with evidence for genes from many different sources in their nuclei. Overall, it has provided important insights into the fundamental processes of cell symbiosis and genome reshaping that have produced some of the most important organisms we see today.”

*a seasonal dish that consists of a deboned chicken stuffed into a deboned duck, which itself is stuffed into a deboned turkey.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.

JGI announces final round of 2022 Functional Genomics awardees

Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!

Introducing New Members of the JGI User Executive Committee

incoming 2023 UEC members

JGI at 25: Mapping Switchgrass Traits with Common Gardens

Aerial photo of the switchgrass diversity panel late in the 2020 season at the Kellogg Biological Station in Michigan. (Robert Goodwin)

JGI Contributes Nine to 2022 Highly Cited Researchers List

Nine headshots, one for each researcher, laid out beside a purple ribbon reading, "Home to Highly Cited Researchers 2022 Clarivate"
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California