DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

News & Publications
Home › News Releases › DOE Joint Genome Institute Completes Soybean Genome— Data Released to Advance Biofuel, Food, & Feed Research

December 8, 2008

DOE Joint Genome Institute Completes Soybean Genome— Data Released to Advance Biofuel, Food, & Feed Research

lores_dried_soybean

Dried soybean, courtesy of USDA-ARS

WALNUT CREEK, CA— The U.S. Department of Energy Joint Genome Institute (DOE JGI) has released a complete draft assembly of the soybean (Glycine max) genetic code, making it widely available to the research community to advance new breeding strategies for one of the world’s most valuable plant commodities.  Soybean not only accounts for 70 percent of the world’s edible protein, but also is an emerging feedstock for biodiesel production. Soybean is second only to corn as an agricultural commodity and is the leading U.S. agricultural export.

DOE JGI’s interest in sequencing the soybean centers on its use for biodiesel, a renewable, alternative fuel with the highest energy content of any alternative fuel. According to 2007 U.S. Census data, soybean is estimated to be responsible for more than 80 percent of biodiesel production.

“The genome sequence is the direct result of a memorandum of understanding between DOE and USDA to increase interagency collaboration in plant genomics,” said DOE Under Secretary for Science Dr. Raymond L. Orbach.  “We are proud to support this major scientific breakthrough that will not only advance our knowledge of a key agricultural commodity but also lead to new insights into biodiesel production.”

“Soybeans have been an important food plant providing essential protein to people for hundreds of years,” said USDA Chief Scientist and Under Secretary for Research, Education, and Economics Dr. Gale A. Buchanan.  “Now, with the new knowledge available through this joint DOE/USDA genome sequencing project, researchers everywhere will be able to further enhance important traits that make the soybean such a valuable plant. It’s a great day for agriculture and people everywhere.”

This effort was led by Dan Rokhsar and Jeremy Schmutz of the DOE JGI, Gary Stacey of the University of Missouri-Columbia, Randy Shoemaker of the U.S. Department of Agriculture (USDA)-Agricultural Research Service (USDA-ARS), Scott Jackson of Purdue University, with support from the DOE, the USDA, and the National Science Foundation (NSF). In addition, the United Soybean Board, the North Central Soybean Research Program, and the Gordon and Betty Moore Foundation, have supported the soybean genome effort.

“Soybean is the one of the largest and most complex plant genomes sequenced by the whole genome shotgun strategy,” noted Rokhsar.  The process entails shearing the DNA into small fragments enabling the order of the nucleotides to be read and interpreted. Steven Cannon of the USDA-ARS collaborated with the DOE team to ensure the accuracy of the assembly.

Preliminary scientific details emerging from the sequence analysis will be presented by Schmutz at the International Conference on Legume Genomics and Genetics in Puerto Vallarta, Mexico, December 8, 2008. The soybean genome sequence information can be browsed at http://www.phytozome.net/soybean.

Schmutz and colleagues have begun to analyze the soybean genome, which at one billion nucleotides is roughly one-third the size of the human genome. Preliminary studies suggest as many as 66,000 genes—more than twice the number identified in the human genome sequence, and nearly half-again as many as the poplar genome, sequenced by DOE JGI and published in the journal Science in 2006.

“We have ordered and localized about 5,500 genetic markers on the sequence, which promise to be of particular importance to those researchers seeking to optimize certain qualities in soybean,” said Schmutz. Thousands of these markers were developed by Perry Cregan and colleagues of the USDA-ARS with support of the United Soybean Board. A genetic marker represents a known location on a chromosome that can be associated with a particular gene or trait. Prospective genome pathways of interest are those that directly influence yield, oil and protein content, as well as drought tolerance and resistance to nematodes and diseases such as the water mold Phytophthora sojae, previously sequenced by DOE JGI, which causes stem and root rot of soybean.

In 2007, soybean accounted for 56 percent of the world’s oilseed production.  James Specht, Professor at the University of Nebraska, said that this nitrogen-fixing legume crop offers the dual benefit of a seed high in protein and oil—with room for improvement. “With the advent of low-cost re-sequencing technologies, soybean scientists now have the means to identify sequence differences responsible for yield potential–the most desired of all crop traits, but to date the most intractable.”

“The soybean genome sequence will be a valuable resource for the basic researcher and soybean breeder alike,” said Jim Collins, Assistant Director for the Biology Directorate at the NSF. Collins and Judith St. John of USDA Agricultural Research Service co-chair the Interagency Working Group on Plant Genomes, which oversees the National Plant Genome Initiative.  “The close coordination between the DOE sequencing project and the NSF SoyMap project facilitated through the National Plant Genome Initiative has added value to the sequence and physical map resources for this important crop,” Collins said.

The soybean genome project is already making its mark out in the field.

“It’s tremendous that the soybean genome is out in the public’s hands.” Said Rick Stern, a New Jersey soybean farmer and chair of the Production Research program for the United Soybean Board (USB).  “Now every breeder can go into this valuable library for the information that will help speed up the breeding process.  It should cut traditional breeding time by half from the typical 15 years.”

The U.S. Department of Energy Joint Genome Institute, supported by the DOE Office of Science, unites the expertise of five national laboratories — Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, and Pacific Northwest — along with the HudsonAlpha Institute for Biotechnology — to advance genomics in support of the DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI’s Walnut Creek, CA, Production Genomics Facility provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

You can move, but you can’t hide

Illustration of a magnifying glass identifying viruses and plasmids.

JGI announces second round of 2023 New Investigator awardees

From left to right: [above] Emma Bell, Mallory Choudoir, Sneha Couvillion, Tobin Hammer, Christina Hazard, Rachel Mackelprang, Brook Moyers, Mei, Ran,; [below] Benjamin Peterson, Dacheng Ren, Allison Rober, Neal Scott, Chikae Tatsumi, Vojtech Tlaskal, Fernando Torralbo, Luis Felipe Valdez-Nuñez

A Collaboration to Improve Plant Genome Annotations Across Species

A tiled collage of square photos of different plants - soybeans, and sorghum, for example.

From Berkeley to Binghamton: Tracking Strawberry Evolution

iPHoP: A Matchmaker for Phages and their Hosts

iPHoP image (Simon Roux)

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California