DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

News & Publications
Home › News Releases › A Microbiological “Template” for Mitigating Methane Emissions

July 1, 2011

A Microbiological “Template” for Mitigating Methane Emissions

WALNUT CREEK, Calif.—Carbon dioxide may be the most name-dropped greenhouse gas, but methane is 20 times more potent. In 2009, the U.S. Environmental Protection Agency calculated that 20 percent of the nation’s human-related methane emissions were attributable to livestock digestive processes. In Australia, livestock emissions account for 12 percent of the country’s total greenhouse gas emissions.

To understand how methane is produced in livestock, an international team of scientists including researchers at Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the DOE JGI collaborated to sequence the microbial communities inside the Tammar wallaby, a plant-eating marsupial related to the familiar kangaroo whose digestive system has been compared to that of ruminants such as cows and sheep.

Mother (Kiah) and Joey

Wallaby, photo by Mehgan Murphy, Smithsonian’s National Zoo.

In the June 30, 2011 issue of Science Express, the researchers described the genome of a bacterium found in the wallaby’s gut that could help explain why the methane emissions in these Australian marsupials are lower than those of livestock. The information could be used to reduce the methane emissions contributions of livestock not just in Australia but worldwide.

“We hope that in the next few years, in addition to strategies inhibiting the abundance of methane-producing microbes in livestock, we will have identified how to augment the growth of other bacteria so that feed digestion and fermentation remain optimal and with reduced methane emissions,” said study senior author Mark Morrison, a CSIRO Science Leader in Metagenomics who works in their Division of Livestock Industries. “We think the research with the Tammar wallabies have provided us another group of bacteria to target, in addition to revealing other key differences between livestock and macropodids—marsupials such as kangaroos and wallabies.”

The Tammar wallaby’s gut microbiome was sequenced by the DOE JGI under the 2007 Community Sequencing Program portfolio in part to compare how plant biomass is degraded by the marsupial gut microbiota compared to other gut microbiota, and the results were described in a Proceedings of the National Academy of Sciences USA (PNAS) publication last year. DOE JGI metagenome scientist Susannah Tringe, a co-author on both of the Tammar wallaby papers, called this work “a really clever follow-up,” noting that in the previous study, “[the researchers] observed novel uncultivated bacteria that appeared to be unique to the wallaby gut, including one they named WG-1 (for Wallaby Group 1).”

“This new work builds on the growing knowledge portfolio of DOE JGI gut metagenome projects targeting biomass-degrading organisms, such as the termite hindgut metagenome and the recent cow rumen metagenome [published in Science earlier this year],” Tringe said. In addition to making these datasets publically available, DOE JGI and its collaborators provide computational tools to further enrich the opportunities to explore diverse industrial applications. “The DOE JGI is uniquely positioned, working in concert with our community of collaborators, to apply the power of genomics to important societal issues.”

CSIRO postdoctoral fellow Phillip Pope, Morrison and his colleagues at CSIRO used the DOE JGI’s metagenome assembly to construct a partial draft genome of WG-1 using a binning algorithm known as PhyloPythia, developed by Professor Alice McHardy, from the Max Planck Institute for Informatics in Saarbrücken, Germany.

“With that blueprint in hand, it was possible to use metabolic pathway information to devise a strategy to bring this previously uncultivated ‘bug’ into culture for more in-depth study,” Tringe said.

“Our initial analysis of the metagenomic dataset, first reported in the PNAS article, showed that there were key bacterial and enzyme-based differences between the microbiota present in Tammar wallabies and other herbivores,” said Morrison. “The current Science paper involves our use of computational methods to produce the information needed to isolate [WG-1] and evaluate its potential role in feed digestion and reduced methane emissions,” via further experimentation and complete genome sequencing.

Pope and colleagues propose that WG-1 and this group of bacteria more generally may hold clues for efforts to modify fermentation in livestock so as to produce less methane. “Our multinational collaboration stems from support provided by the DOE JGI Community Sequencing Project. It has not only been a key for us to better understand the microbial aspects of plant digestion by the Tammar wallaby, but has also furthered our knowledge of the microbial world and its roles in energy production,” said Morrison.

The U.S. Department of Energy Joint Genome Institute, supported by the DOE Office of Science, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI, headquartered in Walnut Creek, Calif., provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow DOE JGI on Twitter.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

You can move, but you can’t hide

Illustration of a magnifying glass identifying viruses and plasmids.

JGI announces second round of 2023 New Investigator awardees

From left to right: [above] Emma Bell, Mallory Choudoir, Sneha Couvillion, Tobin Hammer, Christina Hazard, Rachel Mackelprang, Brook Moyers, Mei, Ran,; [below] Benjamin Peterson, Dacheng Ren, Allison Rober, Neal Scott, Chikae Tatsumi, Vojtech Tlaskal, Fernando Torralbo, Luis Felipe Valdez-Nuñez

A Collaboration to Improve Plant Genome Annotations Across Species

A tiled collage of square photos of different plants - soybeans, and sorghum, for example.

From Berkeley to Binghamton: Tracking Strawberry Evolution

iPHoP: A Matchmaker for Phages and their Hosts

iPHoP image (Simon Roux)

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California