DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › Opening New Frontiers: First Volume of Microbial Encyclopedia Published in the Journal Nature by DOE JGI, Collaborators

December 23, 2009

Opening New Frontiers: First Volume of Microbial Encyclopedia Published in the Journal Nature by DOE JGI, Collaborators

WALNUT CREEK, CA—The Earth is estimated to have about a nonillion (10 to the 30th) microbes in, on, around, and under it, comprised of an unknown but very large number of distinct species. Despite the widespread availability of microbial genome data—close to 2,000 microbes have been and are being decoded to date—a vast unknown realm awaits scientists intent on exploring microorganisms that inhabit this “undiscovered country.”

Two thousand years after Pliny the Elder compiled one of the earliest surviving encyclopedic works, and in the spirit of his goal of providing “light to the obscure,” the Department of Energy Joint Genome Institute (DOE JGI) has published the initial “volume” of the Genomic Encyclopedia of Bacteria and Archaea (GEBA).  Presenting a provocative glimpse into this uncharted territory, an analysis of the first 56 genomes representing two of the three domains of the tree of life appears in the December 24 edition of the journal Nature.

Nature_JGI

From DNA to digital information about the vast unexplored microbial world–the Genomic Encyclopedia of Bacteria and Archaea (GEBA) pilot project led by the DOE Joint Genome Institute (DOE JGI), is beginning to fill in the underrepresented branches of the tree of life.

“Microbes mediate almost every conceivable biological process on the planet and genome sequencing has revolutionized our understanding of the diverse roles that they play,” said DOE JGI Director Eddy Rubin. “The information from this first set of organisms has provided a rich source of novel enzymes and detailed biochemical pathways that can help scientists optimize processes of critical importance to areas of the DOE mission, such as biofuels production, bioremediation, and how carbon is captured and cycled in the environment.”

Most studies in microbiology have exploited a narrow subset of the evolutionary diversity of bacteria and archaea known to exist, and were selected more for convenience (and because they cause diseases) rather than the opportunity to advance discovery science. From the tree of microbial diversity the genomes from only a few branches have been sequenced. The DOE JGI is now exploring Earth’s microbial “dark matter” with a project to sequence little-studied microbial species that will inform other microbes and complex microbial communities.

“The main driver behind the GEBA project is that while the currently available sequenced genomes cover a wide range of biological and functional diversity, they have not covered a wide enough range of phylogenetic diversity,” said senior author Jonathan Eisen, DOE JGI Phylogenomics Program Head and University of California, Davis Professor.  “What distinguishes GEBA is that it is less about the individual genomes and more about building a more balanced catalog of the diversity of genomes present on the planet which in turn should facilitate searches for novel functions and our understanding of the complex processes of the biosphere.”

Beyond filling in what he refers to as the “phylogenetic dark matter of the biological universe,” Eisen said that the information flowing from the project will shed light on the diversity of gene families and improve the understanding of how microbes acquire new functions. In addition, the newly sequenced organisms will provide urgently needed anchors for the improved annotation (assessment of biological function) of data emerging from the many ongoing projects that have expanded upon the idea of studying individual microbes by studying entire communities, deciphering specific microbial capabilities from complex environmental samples.  A key outcome will be new gene products and enzymes previously unknown to biologists.

Jonathan Eisen photographed in his office in the Genome building.

GEBA Nature paper enior author Jonathan Eisen, DOE JGI Phylogenomics
Program Head and University of California, Davis Professor. Click here to watch a video of Eisen discussing the GEBA project.

“Microbes run the world. It’s that simple.”  These bold words open a 2007 National Academy of Sciences report on this study of microbial communities or “Metagenomics.” The DOE has a well-established tradition of contributing to the advancement of microbial genomics for energy and environmental applications.

Already, several of the characterized microbes from the first GEBA “volume” are paying dividends. DOE JGI researchers Natalia Ivanova and Athanasios Lykidis discovered a novel set of cellulases—enzymes capable of breaking down plant material into sugars that can be rendered into transportation fuel—in a variety of GEBA organisms.  In partnership with the DOE Joint BioEnergy Institute, researchers synthesized these genes and have begun to characterize them.  These enzymes are of particular interest because they should be active in highly acidic environments, which could make them valuable for the liquid pretreatment of biomass feedstocks for biofuels.

The GEBA pilot was launched in May 2007 in collaboration with the non-profit German Collection of Microorganisms and Cell Cultures, DSMZ (http://www.dsmz.de/), to sequence 100 bacterial and archaeal genomes based on the phylogenetic positions of organisms.

“The GEBA project perfectly fits with our vision for the future of microbial taxonomy and the collection of type strains in general,” said Hans-Peter Klenk, Head of the Department of Microbiology at DSMZ. “DSMZ will provide easy and affordable access to biological material, cultures as well as DNA, of all GEBA pilot project strains to the worldwide scientific community—without any strings attached. Moreover, participation in the GEBA pilot project provides an excellent opportunity to train the next generation of genome scientists.”

“GEBA is a triumph of edgy science from two government institutions with perfect complementarities, forming an international partnership for the benefit of the entire community,” said Nikos Kyrpides, JGI Genome Biology Program Head, who helped launch the project and whose group designed and administers the GEBA data management and analysis system in collaboration with the Biological Data Management and Technology Center of LBNL: http://img.jgi.doe.gov/geba.

“This is only the start,” said Eisen, reinforcing the magnitude of the project beyond the pilot phase.  “The known phylogenetic diversity of bacteria and archaea is immense with hundreds of major lineages and probably millions if not hundreds of millions of species. This encyclopedia project is starting at the top – with the major phylogenetic groups – 100 genomes from across the tree.  But we have barely scratched the surface of characterizing the diversity on the planet.”  Eisen and his colleagues hope to extend GEBA beyond the pilot phase to sequence hundreds, and perhaps even thousands, of genomes from additional unknown microbes.

Detailed descriptions for all of the individual sequenced GEBA organisms are already being published in the recently launched Journal Standards in Genomic Sciences (SIGS) the official open access online publication of the Genomic Standards Consortium (GSC).

Click here to watch a video of Eisen featuring the GEBA project.

 

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.

JGI announces final round of 2022 Functional Genomics awardees

Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!

Introducing New Members of the JGI User Executive Committee

incoming 2023 UEC members

JGI at 25: Mapping Switchgrass Traits with Common Gardens

Aerial photo of the switchgrass diversity panel late in the 2020 season at the Kellogg Biological Station in Michigan. (Robert Goodwin)

JGI Contributes Nine to 2022 Highly Cited Researchers List

Nine headshots, one for each researcher, laid out beside a purple ribbon reading, "Home to Highly Cited Researchers 2022 Clarivate"
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California