DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › Fungal Map of Mutations Key to Increasing Enzyme Production for Bioenergy Use

September 1, 2009

Fungal Map of Mutations Key to Increasing Enzyme Production for Bioenergy Use

WALNUT CREEK, CA—In half a century, one fungus has gone from being the bane of the Army quartermasters’ existence in the Pacific to industry staple and someday, as part of the U.S. Department of Energy’s mission to promote national energy security through clean, renewable energy development, a biofuel producers’ best friend.

Trichoderma reesei’s makeover is due in part to scientific explorations that led to the development of mutant fungal strains that produce large quantities of biomass-degrading enzymes.

postia

T. reesei, courtesy of Irma Salovuori, VTT Biotechnology

Now an international team of researchers led by scientists at the DOE Joint Genome Institute (JGI), the French applied research center IFP– particularly concerned with renewable resources and energies — and the Vienna University of Technology (TU Vienna) provides the first genome-wide look at what these mutations are in order to understand just how cellulase production was first improved, and how it can be boosted even further.

“We want to understand the path that we’ve taken to high enzyme production because it isn’t exactly known what was done to these strains,” said Scott Baker, a DOE JGI scientist at Pacific Northwest National Laboratory who, along with Christian Kubicek of TU Vienna and Antoine Margeot of IFP, is a senior author of the paper published online the week of August 31 in the journal Proceedings of the National Academy of Sciences Online Early Edition. “There were three mutations characterized previously that gave us some clues, but that just touched the tip of the iceberg. There’s over 200 mutations we found in the T. reesei genome across 60 genes. We now have a blueprint on which we can do future studies to see which genes are related to the enzymes. If you can produce more enzyme more efficiently, that makes your process — in this case the production of biofuel — more economical.”

baker_scott

Scott Baker, PNNL

During World War II, T. reesei frustrated American Army quartermasters in the South Pacific by speeding up the rate at which canvas supplies wore out. Now the same fungus is a key producer of industrial enzymes that are used, among other applications, to break down biomass for biofuel production.

Part of the makeover can be attributed to scientists who developed high cellulase-producing strains of the fungus through several rounds of treating the fungus with a variety of mutagens and then screening the resulting mutant strains to select those in which cellulase production had been increased.

To create these high cellulase producing fungal strains, researchers exposed the original strain to two rounds of mutagenesis to create the high-producing strain NG14 and an additional 3rd round to generate RUT C30,” said DOE JGI scientist and study co-first author Wendy Schackwitz. “It is not known which of the many induced mutations are responsible for this increased production. With information from this study, you can begin to understand which mutations are involved in boosting cellulase production and which are just baggage.”

Schackwitz, her fellow co-first author Stéphane Le Crom from the French institute École Normale Supérieure and their colleagues mapped the mutations found on two hyperproducing strains of T. reesei, performing “massively parallel sequencing” on an isolate of the strain NG14 and two isolates of its direct descendant RUT C30.

The current study complements last year’s publication of the T. reesei genome, which was sequenced at the DOE JGI. The authors looked at the sequence of the reference strain named for the Army quartermasters, QM6a, noted Baker. “Now we’re looking at strains such as RUT C30, which is a parent strain for many cellulase producing lines used in industry, to figure out how cellulase production might be further boosted without affecting the health of the strain,” he added.

Wendy

Wendy Schackwitz, DOE JGI

Study co-author Randy Berka, a director at the Davis, Calif.-based office of the Danish bioinnovation company Novozymes, one of the largest producers of industrial enzymes, confirmed T. reesei’s importance for biotechnical applications. “Most, if not all of the T. reesei strains that are used to produce cellulases today for industrial applications were derived from the ancestral QM6a isolate and its progeny,” he said. “Companies have devised ways to generate improved strains from the QM6a pedigree that produce cellulase enzyme products more economically.  Along with genome modifications that have improved cellulase production, these methods may introduce negative changes in the genome that affect the organism’s robustness.”

Using Illumina next generation sequencing technology, Le Crom and his French colleagues did single end reads on the RUT C30 and NG14 isolates while Schackwitz and her DOE JGI colleagues did paired ends reads on the other RUT C30 isolate. Paired end reads consist of short DNA sequences on either end of an unsequenced DNA fragment of known size and serve as a way to narrow down possible regions where the reads can be placed. This additional information allows placement of many reads that are otherwise difficult to align, and using them allowed the DOE JGI team to pick out very short DNA sequences that had been inserted or deleted.

Researchers identified several kinds of novel mutations in the sequences: 223 single nucleotide variants, 15 small insertions or deletions called indels and 18 larger deletions. When the isolates’ sequences were compared against the reference strain’s sequence, the researchers noted that as a result of boosting cellulase production, the NG14 and RUT C30 strains had lowered amino acid growth rates and reduced use of the lactose pathway.

With the mutation map in hand, researchers can now go through each mutation to identify its effect on the T. reesei strain.  The completed mapping project means that researchers will be able to study the mutations and their effects in more detail, said Schackwitz.

“By identifying the changes that are responsible for the improvements and the effects of the negative changes, we can learn a great deal about the components within T. reesei cells that might be further tweaked to make strains with higher productivities which translates into better economy. This could be critical in developing T. reesei strains that produce enzymes cheaply enough for demanding applications such as cellulosic ethanol,” added Novozymes staff scientist and study co-author Michael Rey.

This fruitful collaboration began when Pr. Christian P. Kubicek from TU Vienna realized both DOE JGI and the two French laboratories IFP and École Normale Supérieure, which were working together, were sequencing genomes from different T. reesei strains, and that they would get even more relevant information by sharing data and uniting. With the help of all involved institutes, the work was further coordinated, data analyzed and results compiled by Antoine Margeot at the Biotechnology department of IFP.

Aside from the international research collaborations that resulted in the paper, Baker also credited the collaboration between DOE offices with making the project possible. “This project spans basic research to what ends up being an applied research topic,” he said. “Parts of DOE that traditionally fund very basic science, offices that fund more applied research and sections that support international collaboration all come together to support that work and make a major contribution to this paper.”

Other authors on the study include DOE JGI’s Genetic Analysis Program head Len Pennacchio and Joel Martin. Other collaborating institutions are IFR36 Transcriptome plateform (France) and the INSERM institute (France).

The U.S. Department of Energy Joint Genome Institute, supported by DOE’s Office of Science, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup.  DOE JGI, headquartered in Walnut Creek, Calif., provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow DOE JGI on Twitter.

Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America’s most intractable problems in energy, national security and the environment. PNNL employs 4,250 staff, has a $918 million annual budget and has been managed by Ohio-based Battelle since the lab’s inception in 1965. Follow PNNL on Facebook, LinkedIn and Twitter.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.

JGI announces final round of 2022 Functional Genomics awardees

Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!

Introducing New Members of the JGI User Executive Committee

incoming 2023 UEC members

JGI at 25: Mapping Switchgrass Traits with Common Gardens

Aerial photo of the switchgrass diversity panel late in the 2020 season at the Kellogg Biological Station in Michigan. (Robert Goodwin)

JGI Contributes Nine to 2022 Highly Cited Researchers List

Nine headshots, one for each researcher, laid out beside a purple ribbon reading, "Home to Highly Cited Researchers 2022 Clarivate"
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California