DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

Our Science
Home › Science Highlights › The Most Complete Functional Map of an Entire Enzyme Family

May 22, 2015

The Most Complete Functional Map of an Entire Enzyme Family

DOE-funded researchers develop a new process for annotating cellulose-degrading enzymes.

The Science:

Researchers at two Department of Energy-funded Scientific User Facilities collaborated with one of three Bioenergy Research Centers to develop and analyze high-resolution crystal structures of an enzyme from the cellulose-degrading GH55 family. They then went further and were able to apply a variety of techniques that resulted in the “most complete functional mapping of an entire GH family available to date.”

Overlay of SacteLam55A onto PcLam55A

Combining the scientific resources of two DOE Office of Science User Facilities, the Advanced Photon Source and the DOE Joint Genome Institute, researchers were able to examine the dynamic motion of several residues surrounding the active site of the substrate-bound structure of SacteLam55A, a glycoside hydrolase (GH) enzyme. (Image from Bianchetti CM et al, J Biol Chem. 2015 May 8. doi: 10.1074/jbc.M114.623579.)

 

The Impact:

Members of the GH55 enzyme family are known for their ability to break down cellulose and thus are of interest to bioenergy researchers working on advancing large-scale biofuels production. The approach described in this study could speed up the process of studying cellulose-degrading enzymes by allowing researchers to study entire families at once.

Summary

Many of the microbial and metagenome projects conducted at the U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science user facility managed by Lawrence Berkeley National Laboratory, focus on microbial communities in the guts of insects and animals because of their roles in breaking down the plant mass consumed by these hosts for energy. When DOE JGI researchers published the cow rumen metagenome in Science, they added nearly 30,000 candidate cellulose-degrading genes that encode carbohydrate-active enzymes to the (CAZymes) database from that one project alone.

The process of functionally annotating each one of these genes, however, can be time-consuming. For enzymes in the GH55 family of cellulose-degrading genes, for example, much of the previous work has been carried out on fungi. For example, the structure of the protein PcLam55A was derived using the white-rot fungus Phanerochaete chrysosporium, which had been sequenced by the DOE JGI.

In a study published May 8, 2015 in the Journal of Biological Chemistry, a team including researchers from the DOE JGI and the DOE-funded Great Lakes Bioenergy Research Center characterized the structure and function of another GH55 protein – SacteLam55A. The gene SACTE_4363 encodes this protein and was isolated from the microbe SirexAA-E in the gut of the pinewood-boring wasp Sirex noctilio. The gene was found when the microbe was grown on cellobiose, xylan, and pretreated switchgrass samples, suggesting it has cellulolytic properties.

To determine the gene’s structure, researchers relied on diffraction data collected at the Advanced Photon Source, a DOE user facility at Argonne National Laboratory to develop high-resolution crystal structures. Through assays, and techniques such as gene synthesis and cell-free protein translation, the team was also able to characterize the biochemistry and structure of the GH55 family.

“The combination of gene synthesis, cell-free translation and assays using a diagnostic panel of substrates across the entire GH55 represents, to our knowledge, the most complete functional mapping of an entire GH family available to date,” the team reported. The collaboration of two DOE User Facilities with a DOE Bioenergy Research Center that enabled this research, combining disparate technologies, will advance the understanding of cellulose structure and function to a depth beyond the capabilities of any one Facility.

Contact

Sam Deutsch
DOE Joint Genome Institute
sdeutsch@lbl.gov

Funding

  • U.S. Department of Energy Office of Science
  • University of Wisconsin
  • Michigan Economic Development Corporation
  • Michigan Technology Tri-Corridor

Publication

  • Bianchetti CM et al. Active site and laminarin binding in glycoside hydrolase family 55. J Biol Chem. 2015 May 8: 290, 11819-11832. doi:10.1074/jbc.M114.623579.

Related Links

  • http://jgi.doe.gov/news_11_01_27/
  • http://genome.jgi.doe.gov/Phchr2/Phchr2.home.html
  • http://jgi.doe.gov/news_5_2_04/

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Science Highlights

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Soil virus offers insight into maintaining microorganisms

Silver age of GOLD introduces new features

Abstract image of gold lights and squares against a black backdrop

Virus Discoveries that Keep Getting Bigger

And illustration of a giant virus in purple and blue tones.

Model fern reveals insight into DNA thievery in ferns

A green fern against a black backdrop

Understanding Wildfire Recovery, Starting in Soil

A photograph of the forest floor, covered in pine needles, with burned trees in the background.

Extracting the Secrets of Secondary Metabolites

A graphic flowchart showing how CRAGE and CRISPR work together
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California