DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › Monkey Flower See, Monkey Flower Do — Model Plant’s Legacy Highlights Gene-Shuffling Hotspots

November 18, 2013

Monkey Flower See, Monkey Flower Do — Model Plant’s Legacy Highlights Gene-Shuffling Hotspots

Genomic variation is a feature of all natural populations and is vitally important in order to survive changes in their environments. Genetic variation among individuals, to which DNA recombination is an important contributor, is passed from parents to offspring and helps explain that different individuals in the population may harbor a diverse set of traits. Understanding and characterizing this variation requires both appropriate model organisms and a considerable amount of genomic sequencing capacity, on the scale of the capability of the U.S. Department of Energy Joint Genome Institute (DOE JGI).

Published the week of November 11, 2013 in the journal Proceedings of the National Academy of Science (PNAS), a group of researchers led by the DOE JGI completed a draft sequence of the monkeyflower (Mimulus guttatus) genome and identified the historic footprints of DNA recombination events that have shaped the development of this plant species over the last several hundred thousand years. By extension, these observations should inform new plant breeding strategies that could be vitally important to developing improved bioenergy plant feedstocks.

The genus Mimulus is commonly known as the monkey flower because of its resemblance to a scrunched up monkey face (Mimulus derives from the Latin for “mime”). The flower is a near cousin to the oft-domesticated snapdragon.

Mimulus guttatus, the yellow monkey flower. Image by James Gaither

Mimulus guttatus, the yellow monkey flower. Image by James Gaither

Uffe Hellsten, an astrophysicist-turned computational scientist in the Plant Genomics Group at the DOE JGI and first author on the PNAS paper said that he and his colleagues traced some 400,000 events that took place within a wild population of Mimulus guttatus.

“We were able to accomplish this by a novel method of analysis developed at the JGI involving sequencing of pooled DNA from the population and aligning these sequences to a Mimulus reference assembly,” Hellsten said. Both the reference assembly and the population genetic analysis are published in the PNAS paper. “This analysis allows us to pinpoint very accurately, down to a few letters of genetic code, the variation of recombination across the genome, and demonstrate that recombination is enhanced near starts of genes.” Regions of high recombination activity are dubbed “hotspots.”

Recombination events in monkey flower (and the team presumed plants in general) work the same way they do in yeast but unlike those in mammals, where hotspots are heavily influenced by the presence of binding sites for a particular recently-evolved protein (PRDM9). This approach achieved an unprecedented resolution by exploiting the presence of a large number of “SNPs” (single nucleotide polymorphisms), which are single nucleotide (a letter of the genetic code) changes between the DNA sequences of different individuals. On average, monkey flower has one change every 35 letters. This is in stark contrast to human genomes, where only about one in 1,000 nucleotides differ. These SNPs can provide genomic signposts to precisely locate past recombination events so that they can be correlated with heritable differences between individuals. Understanding these correlations in Mimulus guttatus will shed light onto the biology of other plants, including bioenergy crops.

“This high resolution allows us to find that hot and cold spots vary within a few hundreds or thousand bases,” Hellsten said. “While cold spots appear to be entirely devoid of recombination, hot spots display a spectrum of ‘temperatures,’ ranging from ‘lukewarm,’ which are common in the genome, to increasingly hotter in less common regions. We found that recombination events occur much more commonly close to the beginnings of genes and that more than 25% of the genome consists of cold spots, which don’t participate in recombination at all, are inherited as unshuffled blocks from parents.”

Since Darwin’s days, Mimulus has been a leading model system for studying ecological and evolutionary genetics in nature. The genus Mimulus ranges widely in floral morphology (and associated pollinators), mating systems (self-pollinating to outcrossing), as well as growth forms (annual herbs to perennial woody shrubs). Like all plant genetic model systems, Mimulus species have a small genome (about 430 million base pairs), a short generation time (6 to 12 weeks), high fecundity (100 to 2,000 seeds per pollination), and are easy to propagate in the greenhouse. Unlike most plant genetic model systems; however, the ecology of Mimulus is known in great detail due to prominent field-based research efforts.

Northern California, home to the DOE JGI, is the worldwide center of biodiversity for Mimulus species. Its growth habit is extremely diverse—from barely noticeable, a half-inch small growing in austere sandy soil on the side of a high-Sierra trail with flowers no bigger than the head of a pin, to vigorous plants thriving in seeps of springs rising to nearly three feet tall with flowers the size of a infant’s fist. Colors range from radiant yellows and oranges to pink and scarlet. Flowers often are decorated with spotted or stripped “bee lines” to provide landing pads for prospective pollinators.

“The DOE JGI Mimulus reference genome provides a valuable service to the research community because it enables the identification of the genes and other important features of the genome structure, such as regulatory and repeated elements, that might contribute to its evolutionary and ecological diversity,” said John Willis, a long-time DOE JGI collaborator from Duke University and co-author of the PNAS paper. “Now that Mimulus is officially published as a reference genome, we should see an avalanche of publications from other research groups capitalizing on the genomic infrastructure that we have provided,” he said.

“With this reference, we’ll be extending Mimulus’ role as an important genetic model to gain additional insights that should be generally applicable to many plants, ultimately helping with crop improvement strategies for important agricultural and biomass-for-biofuels crops,” said Hellsten.

Additional contributors to the research and the publication were from the Hudson-Alpha Institute of Biotechnology, Harvard University, University of Connecticut, and the University of California, Riverside.

The Mimulus guttatus draft genome is publicly available at the DOE Joint Genome Institute’s plant data repository, Phytozome: http://www.phytozome.net/mimulus.php.

 

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.

JGI announces final round of 2022 Functional Genomics awardees

Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!

Introducing New Members of the JGI User Executive Committee

incoming 2023 UEC members

JGI at 25: Mapping Switchgrass Traits with Common Gardens

Aerial photo of the switchgrass diversity panel late in the 2020 season at the Kellogg Biological Station in Michigan. (Robert Goodwin)

JGI Contributes Nine to 2022 Highly Cited Researchers List

Nine headshots, one for each researcher, laid out beside a purple ribbon reading, "Home to Highly Cited Researchers 2022 Clarivate"
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California