DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › The MiSIng Piece Revealed: Classifying microbial species in the genomics era

July 9, 2015

The MiSIng Piece Revealed: Classifying microbial species in the genomics era

Neha Varghese is the first author of the Nucleic Acids Research paper describing the MiSI method for classifying microbial species.

Neha Varghese is the first author of the Nucleic Acids Research paper describing the MiSI method for classifying microbial species.

The rapid explosion in the throughput of DNA sequencing due to new technology platforms is fueling an increase in the number of sequenced microbial genomes and driving much greater availability of these data to the research community. Traditionally, identifying the microorganisms selected for sequencing is often decided on the basis of a single universal marker gene. More recently, however, researchers have noticed that the identity of microbes for which whole-genome information has become available does not always match up with the identity determined by the approaches commonly used prior to the advent of next-generation high-throughput sequencing.

In a study published ahead online July 6, 2015 in Nucleic Acids Research (NAR), a team of researchers from the U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science User Facility and their collaborators developed and evaluated a new method for classifying microbial species that could be supplemented – as needed – by traditional approaches relied on by microbiologists for decades. Study first author Neha Varghese of the DOE JGI says the Microbial Species Identifier (MiSI) method meets a “long standing need for a systematic, scalable, and objective microbial species assignment technique.”

“A fast, genome-sequence based method”

The standard whole-genome approach relies on the small subunit ribosomal RNA gene (16S rRNA); without sequencing, researchers used approaches such as DNA-DNA hybridization, phenotypic information – genotyping, phenotyping, or classifying by the chemical compounds that microbes share – to derive the needed information for microbial classification. The MiSI method developed at the DOE JGI relies primarily on genome sequencing and is a combination of two metrics for determining how closely related two genomes are: genome-wide Average Nucleotide Identity (gANI) and alignment fraction (AF). Computational tool development is a critical element of the DOE JGI 10-Year Strategic Vision, essential to characterizing complex biological and environmental systems in support DOE’s research missions, as well as the Institute’s partnership with the National Energy Research Scientific Computing Center (NERSC).

“Scientists and practitioners of microbiology will much appreciate the robust, extensive, taxonomic organization of the microbial world provided by this fast, genome-sequence based method,” said Jim Tiedje, Director of the Center for Microbial Ecology at Michigan State University. “It provides a more accurate and clear-cut means to identify bacteria.” A DOE JGI collaborator on the Great Prairie Soil Metagenome Grand Challenge project, Tiedje and his former student Kostas Konstantinidis, one of the study’s co-authors, jointly developed the original genome-wide gANI metric modified by the DOE JGI team as a basis for the MiSI method.

The algorithm in the gANI method developed by Tiedje and Konstantinidis used segments sampled over the whole genome and the National Center for Biotechnology Information (NCBI) tool Basic Local Alignment Search Tool (BLAST) for sequence alignment. MiSI speeds up the computations dramatically—by about 10-fold—by using nucleotide sequences of genes and a modified BLAST-based similarity search.

The team implemented the MiSI method over a massive database of more than 13,000 bacterial and archaeal high quality genomes selected from the Integrated Microbial Genomes (IMG) database. These genomes were then classified into clusters represented by cliques or clique-groups where connectivity is determined by genomic similarity (a surrogate for evolutionary distance), and thus, for the first time, allowed researchers to diagram how genomes are related to each other across a large phylogenetic space.

The clique-group comprising of pathogenic Burkholderia mallei and Burkholderia pseudomallei strains highlights the ability of MiSI to capture high similarity as well as subtle differences between closely related genomes. (Figure by Neha Varghese)

The clique-group comprising of pathogenic Burkholderia mallei and Burkholderia pseudomallei strains highlights the ability of MiSI to capture high similarity as well as subtle differences between closely related genomes. (Figure by Neha Varghese)

The completely connected nature of these cliques helped the team identify highly conserved cores of species, while the semi-connect nature of clique groups helped identify species that could be revisited taxonomically. Further, since the clustering is based solely on genomic relatedness, the team was able to use this method to determine if an uncultured organism is either related to an existing species or is a novel candidate species.

“A universal method for species identification”

“The implications of using this method in transforming microbiology cannot be overstated,” said Kyrpides, head of the Prokaryote Super Program and co-corresponding author in this study. “We now have a universal method for species identification across all Archaea and Bacteria that relies on the entire genome rather than a single gene, or a small number of marker genes. When applied to all the sequenced genomes currently available, this method enabled us to observe species evolution in action, manifested through what we call clique groups. Perhaps one of the most dramatic observations we had was that more than half of all the species that had more than one sequenced genome, had at least one genome wrongly named.”

Kyrpides went on to say, “This method is also shedding light on the long debated issue of microbial species. The fact that over 86% of all the microbial species for which more than one genome has been sequenced are grouping into separate cliques, strongly supports the notion of a microbial species, as opposed to the idea of genetic continuum among microbial species, which however was observed for a small number of species, about 5%. It would be very interesting to see how these observations evolve as the numbers of microbial genomes sequenced explode.”

The DOE JGI sequencing pipeline is already using the MiSI method to determine the similarity of newly sequenced genomes to existing reference genomes. MiSI is available for use by the general research community through the IMG system and the data used by the DOE JGI team for this study are publicly available at https://ani.jgi-psf.org.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Introducing New Members of the JGI User Executive Committee

incoming 2023 UEC members

JGI Contributes Nine to 2022 Highly Cited Researchers List

Nine headshots, one for each researcher, laid out beside a purple ribbon reading, "Home to Highly Cited Researchers 2022 Clarivate"

JGI announces first round of 2023 New Investigator awardees

Digital ID card with 10 headshots reads: Congratulations to our 2023 New Investigator recipients!

JGI at 25: Following Fungi that Pry Apart Plant Polymers

A brown goat with white horns looks at green hay

Exploring Possibilities: 2022 JGI-UC Merced Interns

2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)

JGI at 25: Using team science to build communities around data

  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California