DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

News & Publications
Home › News Releases › Liverwort Genes and Land Plant Evolution

October 5, 2017

Liverwort Genes and Land Plant Evolution

Genome analysis of early plant lineage sheds light on how plants learned to thrive on land.

A Marchantia polymorpha thallus in the vegetative form. Cup-shaped structures on the surface are gemma cups (cupules), reproductive organs producing asexual propagules (gemmae). (Photograph by Shohei Yamaoka, Kyoto University)

A Marchantia polymorpha thallus in the vegetative form. Cup-shaped structures on the surface are gemma cups (cupules), reproductive organs producing asexual propagules (gemmae). (Shohei Yamaoka, Kyoto University)

Though it’s found around the world, it’s easy to overlook the common liverwort – the plant can fit in the palm of one’s hand and appears to be comprised of flat, overlapping leaves. Despite their unprepossessing appearance, these plants without roots or vascular tissues for nutrient transport are living links to the transition from the algae that found its way out of the ocean to the established multitude of land plants.

As reported in the October 5, 2017 issue of Cell, an international team including researchers at the U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science User Facility, analyzed the genome sequence of the common liverwort (Marchantia polymorpha) to identify genes and gene families that were deemed crucial to plant evolution and have been conserved over millions of years and across plant lineages. The work was led by researchers at Monash University in Australia, and at Kyoto University and Kindai University in Japan.

“Early plants like the liverwort are what set the world up for land plants. Without them, we wouldn’t have plants more than two feet from the ocean and freshwater,” said DOE JGI Plant Program head Jeremy Schmutz. “In going back to liverworts, we find genes shared with grasses that are candidate genes for crops for biofuel generation. Land plants began with same parts present in Marchantia today so the changes are all due to factors such as evolution, polyploidy, gene exchange and rounds of selection. We want to know what genes do and we do this by translating function across genomes using conserved sequences. Smaller genomes with less complexity – such as those in a basal or early plant model like liverwort – give us the ability to identify ancestral genes for a gene or gene family. We identify gene function in a plant and determine how this gene works, and then we identify other genes by understanding the evolutionary history of gene or gene family across the history of plants.”

Importance of Plant Cell Walls

Video depicts growth of female thalli of Marchantia polymorpha. Pictures were taken for 58 days, 1 picture/hour, starting from a two-week-old thallus. The whole sequence was compressed to 57 sec. After 24 days, far-red light was added, which appears as 'jumping' at the tips of thalli. Female sexual organs (archegoniophores) grow upward after irradiation of far-red light. (Video produced by K.T. Yamato & directed by T. Kohchi, Kyoto University)

Click here or on the above image to watch a video depicting growth of female thalli of Marchantia polymorpha. Pictures were taken for 58 days, 1 picture/hour, starting from a two-week-old thallus. The whole sequence was compressed to 57 sec. After 24 days, far-red light was added, which appears as ‘jumping’ at the tips of thalli. Female sexual organs (archegoniophores) grow upward after irradiation of far-red light. (Video produced by K.T. Yamato & directed by T. Kohchi, Kyoto University)

The liverwort’s genome sequencing and annotation was done through the DOE JGI’s Community Science Program, and allows for genomic comparisons with other early plant lineages sequenced and analyzed by the DOE JGI: the spikemoss Selaginella moellendorffi and the moss Physcomitrella patens. One of the most important biochemical pathways concerns production of the hormone auxin, which is critical for regulating plant growth and development. The team identified a minimal but complete pathway for auxin biosynthesis in the liverwort. Another finding suggests that the genes encoding enzymes producing “sunscreen” that allowed early plants to tolerate ultraviolet light may have been transferred from ancient soil microbes.

One of the team’s most important findings concern plant cell wall development. The variety of genes encoding enzymes for plant cell wall development found in Marchantia emphasizes the importance of plant cell walls for the transition to land plants. The team identified early lignin biosynthesis genes similar to those in Physcomitrella. While they identified genes involved in plasmodesmata formation (plasmodesmata are membrane channels involved in nutrient and signal molecule transfers) a pathway that is involved in cell division, they also found that liverworts retain the vestiges of cell division pathways predating land plant-specific pathway.

Dealing with Drought and Dessication

A copy of the first obviously identifiable printed image of Marchantia polymorpha, from the 1542 book De historia stirpium commentarii insignes by Leonhart Fuchs, with images drawn by Albrecht Meyer. (Image in public domain and provided by John L. Bowman)

A copy of the first obviously identifiable printed image of Marchantia polymorpha, from the 1542 book De historia stirpium commentarii insignes by Leonhart Fuchs, with images drawn by Albrecht Meyer. (Image in public domain and provided by John L. Bowman)

Another important finding involves water retention and distribution. Early plants had to develop strategies for dealing with drought and desiccation, and many of these same strategies are still employed by modern plants. Abscisic acid is a plant stress hormone that regulates when a plant goes dormant when water is in short supply. The team found homologous genes for abscisic acid biosynthesis, and were also able to identify when specific receptors became critical to land plant families.

Schmutz pointed out that through the Community Science Program, the DOE JGI’s exploration of plant evolutionary history is expanding, leading to the development of a comparative genomics framework, including those from early plant lineages like the liverwort, that benefits the plant research community at large. “The more we accumulate this information in early plant lineages, the easier it is to transfer plant function across plant phylogeny and compare plant families to see the radiation of these genes. We’ll be focusing quite a bit more on the basal lineages of plants to get at the evolutionary history and position of genes. If we can understand the origin of these genes then we can understand historical function. Having multiple species allows us to do more and show more than what we can with just one genome.”

By learning the original functions of genes, elucidated from the genomes of earlier, simpler, plants and cells, scientists can more easily solve for the functions of related genes seen in more complex plants that may help address DOE missions in bioenergy and environmental processes.

The Marchantia polymorpha v3.1 genome data are publically available at Phytozome, the DOE JGI’s plant comparative genomics portal which provides users and the broader plant science community a hub for accessing, visualizing and analyzing JGI-sequenced plant genomes, as well as selected genomes and datasets that have been sequenced elsewhere.

Collaborators on this project included researchers at: HudsonAlpha Institute for Biotechnology; Kobe University (Japan); National Institute of Genetics (Japan); Gregor Mendel Institute (Austria); Nara Institute of Science and Technology (Japan); University of Osnabruck (Germany); Universidad Veracruzana, INBIOTECA (Mexico); University of Cambridge (United Kingdom); CINVESTAV-IPN (Mexico); University of Oxford (United Kingdom); University of Tennessee-Knoxville; Uppsala University (Sweden); Vienna Biocenter Core Facilities (Austria); Institut de Recherche pour le Developpement (France) and, University of Zurich (Switzerland).

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

JGI announces 2023 CSP Functional Genomics awardees

Digital index card with JGI logo reads: Community Science Program (FY23) Congratulations to our CSP Functional Genomics recipients! Picture from left to right: (top) Thom Booth, Gabriel Castrillo, Han Li; (bottom) Jorge A. Marchand, Emre Özdemir, Fong Tian Wong

Researching and Solving Real-World Problems with the 2023 JGI-UC Merced Interns

2023 JGI-UC Merced interns (Zhong Wang/Berkeley Lab)

RECAP: Multi-Omic Journeys with 2023 JGI Annual Meeting Keynotes

Bruce Hungate stands at a podium and gesticulates as he discusses microbes.

For the Tiniest Archaea, A Genomic Switch of Friend or Foe

A grey microscopy photo taken at micron-scale. Microbes shown are small, round and slightly spiky in shape.

Doubling Down on Known Protein Families

An illustration of a microscope emitting a beam of light that hits a small, nondescript item.

The JGI announces 2024 awardees for our Community Science Program annual call

A series of headshots: From left to right: [above] Olivia Ahern, Adriana Corales, Hugh Cross, Megan DeMarche, Joanne Emerson, Matthew Hudson, Megan Keller and Julia Kelliher; [below] Vassili Kouvelis, Seppe Kuehn, Tesfaye Mengiste, Egbert Schwartz, Hannah Schulman, Bram Stone and Jana Voriskova
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California