DOE Joint Genome Institute

  • COVID-19
  • About
  • Phones
  • Contacts
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Products
    • Science Highlights
    • Scientists
    Maize can produce a cocktail of antibiotics with a handful of enzymes. (Sam Fentress, CC BY-SA 2.0)
    How Maize Makes An Antibiotic Cocktail
    Zealexins are produced in every corn variety and protect maize by fending off fungal and microbial infections using surprisingly few enzymes.

    More

    The genome of the common fiber vase or Thelephora terrestris was among those used in the study. (Francis Martin)
    From Competition to Cooperation
    By comparing 135 fungal sequenced genomes, researchers were able to carry out a broader analysis than had ever been done before to look at how saprotrophs have transitioned to the symbiotic lifestyle.

    More

    Miscanthus grasses. (Roy Kaltschmidt/Berkeley Lab)
    A Grass Model to Help Improve Giant Miscanthus
    The reference genome for M. sinensis, and the associated genomic tools, allows Miscanthus to both inform and benefit from breeding programs of related candidate bioenergy feedstock crops such as sugarcane and sorghum.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Poplar (Populus trichocarpa and P. deltoides) grow in the Advanced Plant Phenotyping Laboratory (APPL) at Oak Ridge National Laboratory in Tennessee. Poplar is an important biofuel feedstock, and Populus trichocarpa is the first tree species to have its genome sequenced — a feat accomplished by JGI. (Image courtesy of Oak Ridge National Laboratory, U.S. Dept. of Energy)
    Podcast: Xiaohan Yang on A Plantiful Future
    Building off plant genomics collaborations between the JGI and Oak Ridge National Laboratory, Xiaohan Yang envisions customizing plants for the benefit of human society.

    More:

    Expansin complex with cell wall in background. (Courtesy of Daniel Cosgrove)
    Synthesizing Microbial Expansins with Unusual Activities
    Expansin proteins from diverse microbes have potential uses in deconstructing lignocellulosic biomass for conversion to renewable biofuels, nanocellulosic fibers, and commodity biochemicals.

    Read more

    High oleic pennycress. (Courtesy of Ratan Chopra)
    Pennycress – A Solution for Global Food Security, Renewable Energy and Ecosystem Benefits
    Pennycress (Thlaspi arvense) is under development as a winter annual oilseed bioenergy crop. It could produce up to 3 billion gallons of seed oil annually while reducing soil erosion and fertilizer runoff.

    Read more

  • Data & Tools
    • IMG
    • Genome Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Artistic interpretation of CheckV assessing virus genome sequences from environmental samples. (Rendered by Zosia Rostomian​, Berkeley Lab)
    An Automated Tool for Assessing Virus Data Quality
    CheckV can be broadly utilized by the research community to gauge virus data quality and will help researchers to follow best practices and guidelines for providing the minimum amount of information for an uncultivated virus genome.

    More

    Unicellular algae in the Chlorella genus, magnified 1300x. (Andrei Savitsky)
    A One-Stop Shop for Analyzing Algal Genomes
    The PhycoCosm data portal is an interactive browser that allows algal scientists and enthusiasts to look deep into more than 100 algal genomes, compare them, and visualize supporting experimental data.

    More

    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Podcast: A Primer on Genome Mining
    In Natural Prodcast: the basics of genome mining, and how JGI researchers conducted it in IMG/ABC on thousands of metagenome-derived genomes for a Nature Biotechnology paper.

    Read more

  • User Programs
    • Calls for User Proposals
    • Special Initiatives & Programs
    • User Support
    • Submit a Proposal
    Scanning electron micrographs of diverse diatoms. (Credits: Diana Sarno, Marina Montresor, Nicole Poulsen, Gerhard Dieckmann)
    Learn About the Approved 2021 Large-Scale CSP Proposals
    A total of 27 proposals have been approved through JGI's annual Community Science Program (CSP) call. For the first time, 63 percent of the accepted proposals come from researchers who have not previously been a principal investigator on an approved JGI proposal.

    Read more

    MiddleGaylor Michael Beman UC Merced
    How to Successfully Apply for a CSP Proposal
    Reach out to JGI staff for feedback before submitting a proposal. Be sure to describe in detail what you will do with the data.

    Read more

    Click on the image or go here to watch the video "Enriching target populations for genomic analyses using HCR-FISH" from the journal Microbiome describing the research.
    How to Target a Microbial Needle within a Community Haystack
    Enabled by the JGI’s Emerging Technologies Opportunity Program, researchers have developed, tested and deployed a pipeline to first target cells from communities of uncultivated microbes, and then efficiently retrieve and characterize their genomes.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Publications
    • Scientific Posters
    • Newsletter
    • Logos and Templates
    • Photos
    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Uncovering Novel Genomes from Earth’s Microbiomes
    A public repository of 52,515 microbial draft genomes generated from environmental samples around the world, expanding the known diversity of bacteria and archaea by 44%, is now available .

    More

    Green millet (Setaria viridis) plant collected in the wild. (Courtesy of the Kellogg lab)
    Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet
    In Nature Biotechnology, a very high quality reference Setaria viridis genome was sequenced, and for the first time in wild populations, a gene related to seed dispersal was identified.

    More

    The Brachypodium distachyon-B. stacei-B. hybridum polyploid model complex. (Illustrations credits: Juan Luis Castillo)
    The More the Merrier: Making the Case for Plant Pan-genomes
    Crop breeders have harnessed polyploidy to increase fruit and flower size, and confer stress tolerance traits. Using a Brachypodium model system, researchers have sought to learn the origins, evolution and development of plant polyploids. The work recently appeared in Nature Communications.

    Read more

News & Publications
Home › News Releases › Liverwort Genes and Land Plant Evolution

October 5, 2017

Liverwort Genes and Land Plant Evolution

Genome analysis of early plant lineage sheds light on how plants learned to thrive on land.

A Marchantia polymorpha thallus in the vegetative form. Cup-shaped structures on the surface are gemma cups (cupules), reproductive organs producing asexual propagules (gemmae). (Photograph by Shohei Yamaoka, Kyoto University)

A Marchantia polymorpha thallus in the vegetative form. Cup-shaped structures on the surface are gemma cups (cupules), reproductive organs producing asexual propagules (gemmae). (Shohei Yamaoka, Kyoto University)

Though it’s found around the world, it’s easy to overlook the common liverwort – the plant can fit in the palm of one’s hand and appears to be comprised of flat, overlapping leaves. Despite their unprepossessing appearance, these plants without roots or vascular tissues for nutrient transport are living links to the transition from the algae that found its way out of the ocean to the established multitude of land plants.

As reported in the October 5, 2017 issue of Cell, an international team including researchers at the U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science User Facility, analyzed the genome sequence of the common liverwort (Marchantia polymorpha) to identify genes and gene families that were deemed crucial to plant evolution and have been conserved over millions of years and across plant lineages. The work was led by researchers at Monash University in Australia, and at Kyoto University and Kindai University in Japan.

“Early plants like the liverwort are what set the world up for land plants. Without them, we wouldn’t have plants more than two feet from the ocean and freshwater,” said DOE JGI Plant Program head Jeremy Schmutz. “In going back to liverworts, we find genes shared with grasses that are candidate genes for crops for biofuel generation. Land plants began with same parts present in Marchantia today so the changes are all due to factors such as evolution, polyploidy, gene exchange and rounds of selection. We want to know what genes do and we do this by translating function across genomes using conserved sequences. Smaller genomes with less complexity – such as those in a basal or early plant model like liverwort – give us the ability to identify ancestral genes for a gene or gene family. We identify gene function in a plant and determine how this gene works, and then we identify other genes by understanding the evolutionary history of gene or gene family across the history of plants.”

Importance of Plant Cell Walls

Video depicts growth of female thalli of Marchantia polymorpha. Pictures were taken for 58 days, 1 picture/hour, starting from a two-week-old thallus. The whole sequence was compressed to 57 sec. After 24 days, far-red light was added, which appears as 'jumping' at the tips of thalli. Female sexual organs (archegoniophores) grow upward after irradiation of far-red light. (Video produced by K.T. Yamato & directed by T. Kohchi, Kyoto University)

Click here or on the above image to watch a video depicting growth of female thalli of Marchantia polymorpha. Pictures were taken for 58 days, 1 picture/hour, starting from a two-week-old thallus. The whole sequence was compressed to 57 sec. After 24 days, far-red light was added, which appears as ‘jumping’ at the tips of thalli. Female sexual organs (archegoniophores) grow upward after irradiation of far-red light. (Video produced by K.T. Yamato & directed by T. Kohchi, Kyoto University)

The liverwort’s genome sequencing and annotation was done through the DOE JGI’s Community Science Program, and allows for genomic comparisons with other early plant lineages sequenced and analyzed by the DOE JGI: the spikemoss Selaginella moellendorffi and the moss Physcomitrella patens. One of the most important biochemical pathways concerns production of the hormone auxin, which is critical for regulating plant growth and development. The team identified a minimal but complete pathway for auxin biosynthesis in the liverwort. Another finding suggests that the genes encoding enzymes producing “sunscreen” that allowed early plants to tolerate ultraviolet light may have been transferred from ancient soil microbes.

One of the team’s most important findings concern plant cell wall development. The variety of genes encoding enzymes for plant cell wall development found in Marchantia emphasizes the importance of plant cell walls for the transition to land plants. The team identified early lignin biosynthesis genes similar to those in Physcomitrella. While they identified genes involved in plasmodesmata formation (plasmodesmata are membrane channels involved in nutrient and signal molecule transfers) a pathway that is involved in cell division, they also found that liverworts retain the vestiges of cell division pathways predating land plant-specific pathway.

Dealing with Drought and Dessication

A copy of the first obviously identifiable printed image of Marchantia polymorpha, from the 1542 book De historia stirpium commentarii insignes by Leonhart Fuchs, with images drawn by Albrecht Meyer. (Image in public domain and provided by John L. Bowman)

A copy of the first obviously identifiable printed image of Marchantia polymorpha, from the 1542 book De historia stirpium commentarii insignes by Leonhart Fuchs, with images drawn by Albrecht Meyer. (Image in public domain and provided by John L. Bowman)

Another important finding involves water retention and distribution. Early plants had to develop strategies for dealing with drought and desiccation, and many of these same strategies are still employed by modern plants. Abscisic acid is a plant stress hormone that regulates when a plant goes dormant when water is in short supply. The team found homologous genes for abscisic acid biosynthesis, and were also able to identify when specific receptors became critical to land plant families.

Schmutz pointed out that through the Community Science Program, the DOE JGI’s exploration of plant evolutionary history is expanding, leading to the development of a comparative genomics framework, including those from early plant lineages like the liverwort, that benefits the plant research community at large. “The more we accumulate this information in early plant lineages, the easier it is to transfer plant function across plant phylogeny and compare plant families to see the radiation of these genes. We’ll be focusing quite a bit more on the basal lineages of plants to get at the evolutionary history and position of genes. If we can understand the origin of these genes then we can understand historical function. Having multiple species allows us to do more and show more than what we can with just one genome.”

By learning the original functions of genes, elucidated from the genomes of earlier, simpler, plants and cells, scientists can more easily solve for the functions of related genes seen in more complex plants that may help address DOE missions in bioenergy and environmental processes.

The Marchantia polymorpha v3.1 genome data are publically available at Phytozome, the DOE JGI’s plant comparative genomics portal which provides users and the broader plant science community a hub for accessing, visualizing and analyzing JGI-sequenced plant genomes, as well as selected genomes and datasets that have been sequenced elsewhere.

Collaborators on this project included researchers at: HudsonAlpha Institute for Biotechnology; Kobe University (Japan); National Institute of Genetics (Japan); Gregor Mendel Institute (Austria); Nara Institute of Science and Technology (Japan); University of Osnabruck (Germany); Universidad Veracruzana, INBIOTECA (Mexico); University of Cambridge (United Kingdom); CINVESTAV-IPN (Mexico); University of Oxford (United Kingdom); University of Tennessee-Knoxville; Uppsala University (Sweden); Vienna Biocenter Core Facilities (Austria); Institut de Recherche pour le Developpement (France) and, University of Zurich (Switzerland).

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Podcasts
  • CSP Plans
  • Featured Profiles

Related Content:

Green Algae Reveal One mRNA Encodes Many Proteins

Screencap of green algae video for PNAS paper

An Age of CRAGE: Advances in Rapidly Engineering Non-model Bacteria

JGI-developed genetic engineering technique CRAGE lands the cover of ACS Synthetic Biology. (Wayne Keefe/Berkeley Lab)

Fields of Breeders’ Dreams: A Team Effort Toward Targeted Crop Improvements

Aerial photo of the switchgrass diversity panel late in the 2020 season at the Kellogg Biological Station in Michigan. (Robert Goodwin)

Uncovering Novel Genomes from Earth’s Microbiomes

Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)

2021 JGI Proposal Call Brings New Investigators into Community Science Program

Scanning electron micrographs of diverse diatoms. (Credits: Diana Sarno, Marina Montresor, Nicole Poulsen, Gerhard Dieckmann)

Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet

Green millet (Setaria viridis) plant collected in the wild. (Courtesy of the Kellogg lab)
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Emergency Info
  • Accessibility / Section 508 Statement
  • RSS feed
  • Flickr
  • LinkedIn
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2021 The Regents of the University of California