DOE Joint Genome Institute

  • About Us
  • Phone Book
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Products
    • Science Highlights
    • Scientists
    ear the town of Rifle, Colorado, lies the primary field site for Phase I of the Subsurface Systems Scientific Focus Area 2.0 (SFA 2.0, sponsored by the DOE Office of Biological and Environmental Research—BER).
    Waiting to Respire
    UC Berkeley and JGI researchers joined forces and data sets to describe bacterial genomes for related (“sibling”) lineages that diverged from the bacterial tree before Cyanobacteria and its contemporaries. The information was then used to predict the metabolic strategies applied by a common ancestor to all five lineages.

    Read more

    Field researchers studying drought responses in Panicum hallii at the UT Austin Brackenridge Field Lab. (David Gilbert)
    A Model System for Perennial Grasses
    The DOE supports research programs for developing methods for converting plant biomass into sustainable fuels for cars and jets. By studying a close relative model species like Panicum hallii, researchers can develop crop improvement techniques that could be applied to the candidate bioenergy feedstock switchgrass.

    Read more

    At high temperature, S. paradoxus cells die in the act of cell division, as seen by the dyads with cell bodies shriveled away from the outer cell wall. (Images by Carly Weiss, courtesy of the Brem Lab)
    Mapping Heat Resistance in Yeasts
    In a proof-of-concept study, researchers demonstrated that a new genetic mapping strategy called RH-Seq can identify genes that promote heat resistance in the yeast Saccharomyces cerevisiae, allowing this species to grow better than its closest relative S. paradoxus at high temperatures.

    Read more

  • Our Projects
    • Search JGI Project List
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Jorge Rodrigues is interested in the biological causes of methane flux variation in the Amazon rainforest. (Courtesy of Jorge Rodrigues)
    Methane Flux in the Amazon
    Wetlands are the single largest global source of atmospheric methane. This project aims to integrate microbial and tree genetic characteristics to measure and understand methane emissions at the heart of the Amazon rainforest.

    Read more

    Vampirovibrio chlorellavorus in yellow on green host. (Courtesy of Judith Brown)
    Infections and Host-Pathogen Interactions of Chlorella
    The non-photosynthetic, predatory cyanobacterium Vampirovibrio chlorellavorus is a globally important obligate pathogen of Chlorella species/strains, which are of interest as biofuel feedstocks.

    Read more

    Morphological diversity of Sordariales growing in the lab. Pierre Gladieux's proposal explores functional diversity in Neurospora and its relatives. (Pierre Gladieux, INRA Montpellier)
    Insights into Functional Diversity in Neurospora
    This proposal investigates the genetic bases of fungal thermophily, biomass-degradation, and fungal-bacterial interactions in Sordariales, an order of biomass-degrading fungi frequently encountered in compost and encompassing one of the few groups of thermophilic fungi.

    Read more

  • Data & Tools
    • IMG
    • Genome Portal
    • MycoCosm
    • Phytozome
    • GOLD
    Click on the image above or click here (https://youtu.be/iSEEw4Vs_B4) to watch a CRISPR Whiteboard Lesson from the Innovative Genomics Institute, this one focuses on the PAM sequence.
    Mining IMG/M for CRISPR-Associated Proteins
    Researchers report the discovery of miniature CRISPR-associated proteins that can target single-stranded DNA. The discovery was made possible by mining the datasets in the Integrated Microbial Genomes and Microbiomes (IMG/M) suite of tools managed by the JGI. The sequences were then biochemically characterized by a team led by Jennifer Doudna’s group at UC Berkeley.

    Read more

    The Angelo Coast Range Reserve, from which soil samples were taken, protects thousands of acres of the upper watershed of South Fork of the Eel River (shown here) in Mendocino County. (Akos Kokai via Flickr, CC BY 2.0 https://www.flickr.com/photos/on_earth/17307333828/)
    DAS Tool for Genome Reconstruction from Metagenomes
    Through the JGI’s Emerging Technologies Opportunity Program (ETOP), researchers have developed and improved upon a tool that combines existing DNA sequence binning algorithms, allowing them to reconstruct more near-complete genomes from soil metagenomes compared to other methods. The work was published in Nature Microbiology.

    Read more

    DOE JGI BOOST logo
    New Software Tools Streamline DNA Sequence Design-and-Build Process
    Researchers from the U.S. Department of Energy Joint Genome Institute (DOE JGI) have developed a suite of build-optimization software tools (BOOST) to streamline the design-build transition in synthetic biology engineering workflows.

    Read more

  • User Programs
    • Calls for User Proposals
    • Special Programs
    • User Support
    • Submit a Proposal
    Cropped image of switchgrass microcosm showing established root network. (James Moran)
    FY 2019 FICUS EMSL-JGI Projects Selected
    Through the EMSL-JGI FICUS calls, users can combine EMSL’s unique imaging, omics and computational resources with cutting-edge genomics, DNA synthesis and complementary capabilities at JGI. This was the sixth FICUS call between EMSL and JGI since the collaborative science initiative was formed.

    Read more

    Preparing for a Sequence Data Deluge
    The approved CSP 2019 proposals leverage new capabilities and higher throughput in DNA sequencing, synthesis and metabolomics. Additionally, just over half of the accepted proposals come from primary investigators who have never led any previously accepted JGI proposal.

    Read more

    The molecule cyclic di-GMP plays a key role in controlling cellulose production and biofilm formation. To better understand cyclic di-GMP signaling pathways, the team developed the first chemiluminescent biosensor system for cyclic di-GMP and showed that it could be used to assay cyclic di-GMP in bacterial lysates. (Image courtesy of Hammond Lab, UC Berkeley)
    Innovative Technology Improves Our Understanding of Bacterial Cell Signaling
    Cyclic di-GMP (Guanine Monophosphate) is found in nearly all types of bacteria and interacts with cell signaling networks that control many basic cellular functions. To better understand the dynamics of this molecule, researchers developed the first chemiluminescent biosensors for measuring cyclic di-GMP in bacteria through work enabled by the JGI’s Community Science Program (CSP).

    Read more

  • News & Publications
    • News Releases
    • Blog
    • Publications
    • Scientific Posters
    • Newsletter
    • Logos
    • Photos
    One of the heated plots at the Harvard Forest (Jeff Blanchard)
    Hidden Giants in Forest Soils
    In Nature Communications, giant virus genomes have been discovered for the first time in a forest soil ecosystem by JGI and University of Massachusetts-Amherst researchers. Most of the genomes were uncovered using a "mini-metagenomics" approach that reduced the complexity of the soil microbial communities sequenced and analyzed.

    Read more

    Truffle orchard in Lorraine, France. (Francis Martin)
    Symbiosis a Driver of Truffle Diversity
    Truffles are the fruiting bodies of the ectomycorrhizal (ECM) fungal symbionts residing on host plant roots. In Nature Ecology & Evolution, an international team sought insights into the ECM lifestyle of truffle-forming species. They conducted a comparative analysis of eight Pezizomycete fungi, including four species prized as delicacies.

    Read more

    Blyttiomyces helicus on spruce pollen grain. (Joyce Longcore)
    Expanding Fungal Diversity, One Cell at a Time
    In Nature Microbiology, a team led by JGI researchers has developed a pipeline to generate genomes from single cells of uncultivated fungi. The approach was tested on several uncultivated fungal species representing early diverging fungi.

    Read more

News & Publications
Home › News Releases › Mapping a Path to Improved Cassava Production

April 18, 2016

Mapping a Path to Improved Cassava Production

Comparative analysis highlights impacts of previous breeding programs on cassava genome.

Healthy cassava plant. (Simon Prochnik, DOE JGI)

Healthy cassava plant. (Simon Prochnik, DOE JGI)

For nearly a billion people around the world, cassava is a staple crop and a primary source of calories. The plant is easy to cultivate – cuttings grow well on marginal land—and it is very tolerant of drought. For the U.S. Department of Energy, these traits and its starchy qualities make cassava of interest as a potential feedstock for biofuel production.

Though cassava is easy to cultivate, it is particularly vulnerable to plant pathogens, which can significantly reduce crop yields. To help improve breeding strategies for this root crop, a team led by researchers from University of California, Berkeley and including researchers from the DOE Joint Genome Institute (JGI), a DOE Office of Science User Facility, have described cassava’s genetic diversity in the April 18, 2016 advance online publication of the journal Nature Biotechnology. As cassava roots contain 20-40 percent starch that costs 15-30 percent less to produce per hectare than starch from corn, in many parts of the world, particularly Africa and Southeast Asia, it represents a strategic source of renewable energy—biomass from which ethanol is being produced for transportation fuels. With the help of genomics, researchers hope to apply advanced breeding strategies that can improve cassava’s resistance to diseases and improve crop yields.

members of the International Cassava Genetic Map Consortium

Members of the International Cassava Genetic Map Consortium (Left to right): Jessen Bredeson, UC Berkeley; Kahya Shuaibu, National Root Crops Research Institute (NRCRI), Umudike, Nigeria; Oluwafemi Alaba, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria; Cindy Ha, formerly of UC Berkeley and now at the University of Colorado; Jessica Lyons, UC Berkeley; Chiedozie Egesi, formerly of NRCRI and now with NEXTGEN Cassava at Cornell University; Simon Prochnik, DOE JGI; Ismail Rabbi, IITA, Nigeria. Bredeson, Ha, Lyons, Egesi, Prochnik and Rabbi are authors on the Nature Biotechnology paper.

The cassava genome was initially sequenced under the aegis of the DOE JGI Community Science Program and Roche 454 Life Sciences. Since the draft sequence was released in 2009, researchers have improved it with additional data in order to develop a chromosome-scale sequence, in part in order to apply the information toward improved breeding strategies.

In the paper, the team, which included UC Berkeley specialist Jessen Bredeson and postdoctoral scholar Jessica Lyons, and DOE JGI’s Simon Prochnik and Albert Wu, compared the cassava reference genome to the genomes of relatives castor bean (Ricinis communis), rubber tree (Hevea brasiliensis), Ceara rubber (Manihot glaziovii), and 53 cultivated and wild cassava varieties from around the world. They found that the genetic diversity of cassava used in current breeding efforts has been greatly reduced in Africa, where viruses such as the cassava mosaic disease and the cassava brown streak disease have affected crop yields in many nations. They were able to detect the genetic signature of past cassava improvement programs going back to the 1930’s, which interbred cassava and Ceara rubber, and the persistence of these Ceara rubber regions in elite cassava varieties suggests they confer desirable traits. They also elucidated relatedness between many cultivated cassava varieties, which can help breeders maximize genetic diversity in improvement programs.

“The variants and population structure described here are essential inputs for marker-assisted and genome selection-based approaches to improving disease resistance and yield for this staple crop,” the team noted.

Plant infected with cassava mosaic disease. (Jesson Bredeson, UC Berkeley)

Plant infected with cassava mosaic disease. (Jessen Bredeson, UC Berkeley)

The cassava genome is available on the DOE JGI Plant Portal Phytozome at http://phytozome.jgi.doe.gov/.

Steve Rounsley of Dow AgroSciences spoke about cassava genomics at the DOE JGI’s 2014 Genomics of Energy and Environment Meeting. Watch the video at http://bit.ly/JGI14UMRounsley. Co-author Chiedozie Egisi, formerly of Nigeria’s National Root Crops Research Institute and now the project manager for the Next Generation Cassava Breeding program (NEXTGEN Cassava) at Cornell University, recently spoke about cassava breeding at the 2016 American Association for the Advancement of Science (AAAS) Annual Meeting. Watch his talk at http://bit.ly/Egesi2016AAAS.

Aside from Rounsley and Egesi, collaborators on this project included researchers at: International Institute of Tropical Agriculture (Nigeria and Kenya), Koronivia Research Station (Fiji); CIRAD (Vanuatu); Mikocheni Agricultural Research Institute (Tanzania); Naliendele Agricultural Research Institute (Tanzania); Donald Danforth Plant Science Center; Cornell University, Monash University (Australia); and Dow AgroSciences.

Young girls helping in cassava processing in Nigeria. (Photo by IITA)

Young girls helping in cassava processing in Nigeria. (Photo by IITA)

The work was funded by the Bill & Melinda Gates Foundation, in part through Rounsley’s work while at the University of Arizona, the UK Department for International Development (DFID), and the NEXTGEN Cassava Breeding project.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI, headquartered in Walnut Creek, Calif., provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • News Releases
  • Science Highlights
  • Blog
  • CSP Plans
  • Featured Profiles

Related Content:

Defining Quality Virus Data(sets)

Artist rendering of genome standards being applied to deciphering the extensive diversity of viruses. (Illustration by Leah Pantea)

Hidden Giants in Forest Soils

One of the heated plots at the Harvard Forest (Jeff Blanchard)

Symbiosis a Driver of Truffle Diversity

Truffe noire du Peěrigord (Tuber melanosporum). (Francis Martin)

Probing Interactions Among Molecular Mechanisms, Cellular Processes, and Elemental Cycles

Cropped image of switchgrass microcosm showing established root network. (James Moran)

Spotlighting Differences in Closely-Related Species

Expanding Fungal Diversity, One Cell at a Time

Blyttiomyces helicus on spruce pollen grain. (Joyce Longcore)
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Facebook
  • Flickr
  • Google+
  • Instagram
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2019 The Regents of the University of California