DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › Hidden Giants in Forest Soils

November 19, 2018

Hidden Giants in Forest Soils

A surprising wealth of novel giant viruses has been found in a soil ecosystem.

One of the heated plots at the Harvard Forest (Jeff Blanchard)

One of the heated plots at the Harvard Forest (Jeff Blanchard)

Characterizing the diversity of microbial cells in a handful of soil is so complex it was considered impossible. To date, only a small fraction of the microbes residing in, on and around soils have been identified as part of efforts to understand their contributions to the global carbon cycle, and to other nutrient cycles. Soils are also home to countless viruses that can infect microbes, impacting their ability to regulate these global cycles.

Reported November 19, 2018, in Nature Communications, giant virus genomes have been discovered for the first time in a forest soil ecosystem by researchers from the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility, and the University of Massachusetts-Amherst (UMass Amherst). As the name implies, giant viruses are characterized by disproportionately large genomes and virions that house the viruses’ genetic material. They have been frequently found within protists and algae, and thus they are believed to have a significant impact on their hosts’ population dynamics and the planet’s biogeochemical cycles.

The 16 novel giant viruses discovered in this study increased the total giant virus phylogenetic diversity by more than 20 percent, and belong to diverse lineages. Half of the novel viruses, for example, fall within the Klosneuvirinae, making it the largest subfamily within Mimiviridae. Schulz and Woyke previously reported finding a novel group of giant viruses they dubbed Klosneuviruses in wastewater metagenomes.

“These giant viruses have probably been overlooked in soil ecosystems, but if you look at major capsid proteins, which are barcodes or snippets of them, they’re all over the place,” said JGI Microbial Program head and study senior author Tanja Woyke.

Viruses in the Harvard Forest

The giant virus genomes were discovered by Frederik Schulz, a JGI research scientist, while helping Lauren Alteio, a UMass Amherst graduate student in Jeff Blanchard’s lab, analyze her metagenomic data. “The large number of distinct giant virus genomes found at this sampling site is unparalleled compared to other metagenomic data sets I have seen,” said Schulz. The data was generated from soil samples Alteio collected as part of Blanchard’s project with the JGI’s Community Science Program.

Blanchard is generating reference genomes from soils collected in heated and non-heated plots in the Harvard Forest, data that will ultimately assist in the understanding of microbial greenhouse gas emission and capture. Alteio spent a year at the JGI working on this project in the Woyke lab through the DOE Office of Science Graduate Student Research (SCGSR) Program.

For nearly 30 years, the Harvard Forest in Massachusetts has been home to the world’s longest running soil-warming experiment. Funded by the National Science Foundation’s Long-Term Ecological Research (LTER) Program, a portion of the 4,000 acres has heating cables buried a few inches underground regulating the temperature to constantly be five degrees warmer than nearby control areas.

“This is the first time giant viruses have been discovered in a forest ecosystem,” said Blanchard, “and the amazing diversity in just a thimble of soil suggests that we have just begun to understand their biodiversity and role in soil ecosystems.”

The JGI team involved in the study (left to right): Frederik Schulz, Tanja Woyke, Rex Malmstrom and Danielle Goudeau (sitting).

The JGI team involved in the study included (left to right): first author Frederik Schulz; senior author Tanja Woyke; Rex Malmstrom; and, Danielle Goudeau (sitting). (Janey Lee)

“Based on genome size, several of the novel viruses were among the largest viruses discovered to date,” Schulz concluded. “One of them, with a 2.4-megabase genome, we named “Hyperionvirus” in analogy to the world’s tallest known living tree.”

Smaller Chunks of Soil Diversity

With a myriad of microbial cells in a single gram of soil, JGI researchers aimed to reduce the complexity by flow-sorting microbes into several of small pools of only 100 cells each before sequencing these pools separately. When the metagenomic data from this approach was analyzed, 15 novel giant virus genomes were uncovered. In contrast, only a single giant virus genome was recovered using the standard, whole community shotgun metagenome approach on bulk forest soil samples even though these bulk soil samples were sequenced much more deeply.

“This nonstandard approach was taken deliberately to break up the diversity into smaller chunks. Had we only done it the regular way, we would have missed these giant viruses altogether,” said JGI scientist Rex Malmstrom, also a study co-author.

“The wealth of giant viruses in soil is remarkable and underlines the ubiquitous nature of these enigmatic entities and that these viruses are still mostly underexplored,” said Schulz.

Woyke agreed that finding these novel giant virus genomes is just the beginning. “Soils have been an overlooked ecosystem for giant virus diversity, with studies mostly focused on aquatic environments. The unbinned metagenome soil data suggests that the extent of giant virus diversity in Harvard forest soil is much higher than the 16 genomes recovered in this study, but accessing the genomes with traditional approaches is challenging. This discovery suggests soils should be considered a target for co-cultivation efforts of giant viruses.”

 

Publication: Schulz F et al. Hidden diversity of soil giant viruses. Nature Communications. 2018 Nov 19. doi: 10.1038/s41467-018-07335-2

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

JGI announces first round of 2023 New Investigator awardees

Digital ID card with 10 headshots reads: Congratulations to our 2023 New Investigator recipients!

JGI at 25: Following Fungi that Pry Apart Plant Polymers

A brown goat with white horns looks at green hay

Exploring Possibilities: 2022 JGI-UC Merced Interns

2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)

JGI at 25: Using team science to build communities around data

JGI at 25: Expanding Metagenomics to Capture Viral Diversity

Artist rendering of genome standards being applied to deciphering the extensive diversity of viruses. (Illustration by Leah Pantea)

A New Actinobacterial Chapter in the Genomic Encyclopedia of Bacteria and Archaea

Open book with circular representations of microbial genomes above, all against a green background
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California