DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › Blog › The Expanding Universe of Methane Metabolisms in Archaea

March 4, 2019

The Expanding Universe of Methane Metabolisms in Archaea

Metagenome-assembled archaeal genomes provide new insights into an ancient metabolism.

Panorama of Washburn Hot Springs (Yellowstone National Park). Sediments from the upper pool were sampled and subjected to DNA sequencing by the DOE-Joint Genome Institute (YNP Research Permit: YELL-2012-SCI-05068, PI: W. Inskeep. Image: R. Hatzenpichler).

Panorama of Washburn Hot Springs (Yellowstone National Park). Sediments from the upper pool were sampled and subjected to DNA sequencing by the DOE-Joint Genome Institute (YNP Research Permit: YELL-2012-SCI-05068, PI: W. Inskeep. Image: R. Hatzenpichler).

Methane is a greenhouse gas 20 times more potent than carbon dioxide. Billions of years ago, methane-producing archaea likely played a key role in determining the composition of the Earth’s atmosphere and regulating the global climate for life to flourish.

For Guillaume Borrel and Simonetta Gribaldo of the Institut Pasteur in France, the importance of methanogenesis and the presence of methanogens in nearly all types of anaerobic environments suggest the diversity of methane metabolisms is “vastly underestimated.” In the March 4, 2019, issue of Nature Microbiology, they mined the Integrated Microbial Genomes & Microbiomes (IMG/M) database maintained by the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility, for publicly available metagenome data provided by the other study co-authors, and reconstructed from these 10 metagenome-assembled genomes (MAGs) representing new potential methanogenic, anaerobic methanotrophic and short-chain alkane-oxidizing archaea. They used IMG because the database already contains metagenome datasets from a variety of environments, as well as tools for analysis.

“There is evidence that methanogenesis is one of the oldest metabolisms, with the first traces possibly at ~3.5 Gy (billion years),” Borrel and Gribaldo said in an email. “Therefore, determining under which form it emerged and how it gave rise to the different pathways we see today is not only important to understand early life, but also to link the evolution of this metabolism to geochemical data, which in turn can help to understand its impact on climate along earth history.”

Marker genes for diverse methane metabolisms

Of the 10 MAGs reconstructed in the study, five were from undersampled or previously undescribed lineages, and the other five only distantly related to known methanogens. With the help of this information, the researchers found evolutionary relationships between methanogenesis, methanotrophy, and short-chain alkane oxidation metabolisms. They also identified a set of 38 marker genes that serve as a core set of genes present in archaea with metabolisms involving methyl-coenzyme M reductase (MCR), the final step in methanogenesis, or MCR-like complexes, likely involved in short-chain alkane oxidation.

“We propose a scenario where methanogenesis is possibly the most ancient energetic metabolism in the Archaea, and was lost many times independently during archaeal evolution or evolved into methanotrophy and short-chain alkane oxidation,” Borrel and Gribaldo said. “Overall, these results show a striking case of how metabolic diversity can emerge from tinkering of a common set of enzymes.”

Gribaldo will be speaking on “Exploration of Metagenomic Data to Understand the Diversity and Evolution of Methane Metabolisms” at the NeLLi: New Lineages of Life Symposium in April, which immediately precedes the JGI’s 14th Annual Genomics of Energy & Environment Meeting. Registration for both the NeLLi Symposium and for the JGI Annual Meeting closes on March 11, 2019.

Novel Yellowstone archaeon belongs to Korarchaeota

Drs. Luke McKay and William Inskeep are co-authors on the Borrel et al. study described above, and also led a separate study that is published in the same issue of Nature Microbiology. Their study focuses on the discovery of new populations within the Korarchaeota, one of which contains genes for both sulfur and methane metabolism.

The newly described Korarchaeota were identified in thermal sediments from Washburn Hot Springs in Yellowstone National Park. This large geothermal pool contains high levels of sulfur, methane, carbon dioxide and hydrogen. Inskeep, a longtime JGI collaborator at Montana State University, commented that “Washburn Hot Springs is a highly-reduced, suboxic system that may be analogous to environments found on early Earth.”

: One of the larger geothermal pools (Temperature 65-70 oC, pH 6.4) located at Washburn Hot Springs (Research Permit YELL-2012-SCI-05068. Image: W. Inskeep).

One of the larger geothermal pools (Temperature 65-70 oC, pH 6.4) located at Washburn Hot Springs (Research Permit YELL-2012-SCI-05068. Image: W. Inskeep).

Through the JGI Community Science Program, Inskeep and McKay recovered metagenome-assembled genomes from sediments sampled in Washburn Hot Springs and identified them as belonging to the Korarchaeota phylum. The finding tripled the known number of Korarchaeota genomes, which helped the researchers position the lineage within the archaeal domain. The information, Inskeep added, could also help in the search for a last common ancestor between Archaea and Eukarya.

One genome, two metabolic pathways

“Up to this point, most phylogenomic trees have relied on only one korarchaeotal representative,” said first author McKay. “Now we’re adding two more: one (Candidatus Korarchaeum cryptofilum WS) is similar to the known genome, and the other (Ca.  Methanodesulfokores washburnensis) is more distantly related, containing genes for both methane and sulfur metabolisms.” Methanogenesis and sulfur reduction are among the oldest mechanisms of energy conservation, but the genes for both pathways had never been observed in a single microbial population until now.

Ca.  M. washburnensis was one of the most abundant populations detected in the Washburn sediments and based on metabolic reconstructions, the team has two main hypotheses: the novel korarchaeon could switch between methanogenesis and sulfite reduction depending on environmental conditions, or it could couple the two metabolisms by using sulfite to oxidize methane and hydrogen. McKay emphasized that “the latter possibility would represent a novel pathway for the anaerobic oxidation of methane, a subject of great interest in environmental and evolutionary microbiology.”

Inskeep will be presenting a poster pitch at the upcoming NeLLi Symposium, discussing the “Distribution of predominant high-temperature archaeal and bacterial lineages in Yellowstone National Park,” as well as details of the newly described members of the Korarchaeota.

References:

  • Borrel G et al. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat Microbiol. 4 March 2019. doi:10.1038/s41564-019-0363-3.
  • Nature Microbiology “Behind the Paper”: Borrel G. New perspectives on methane and short-chain alkane metabolisms in the archaea
  • McKay LJ et al. Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nat Microbiol. 4 March 2019. doi:10.1038/s41564-019-0362-4.
  • Nature Microbiology “Behind the Paper”: McKay L. Methane and sulfur metabolisms collide in the Korarchaeota.

 

Byline: Massie Santos Ballon

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Blog

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Introducing New Members of the JGI User Executive Committee

incoming 2023 UEC members

JGI at 25: Mapping Switchgrass Traits with Common Gardens

Aerial photo of the switchgrass diversity panel late in the 2020 season at the Kellogg Biological Station in Michigan. (Robert Goodwin)

JGI at 25: Following Fungi that Pry Apart Plant Polymers

A brown goat with white horns looks at green hay

Exploring Possibilities: 2022 JGI-UC Merced Interns

2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)

JGI at 25: Using team science to build communities around data

JGI at 25: Expanding Metagenomics to Capture Viral Diversity

Artist rendering of genome standards being applied to deciphering the extensive diversity of viruses. (Illustration by Leah Pantea)
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California