DOE Joint Genome Institute

  • COVID-19
  • About
  • Phones
  • Contacts
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Products
    • Science Highlights
    • Scientists
    Screencap of green algae video for PNAS paper
    Green Algae Reveal One mRNA Encodes Many Proteins
    A team of researchers has found numerous examples of polycistronic expression – in which two or more genes are encoded on a single molecule of mRNA – in two species of green algae.

    Read more

    Advances in Rapidly Engineering Non-model Bacteria
    CRAGE is a technique for chassis (or strain)-independent recombinase-assisted genome engineering, allowing scientists to conduct genome-wide screens and explore biosynthetic pathways. Now, CRAGE is being applied to other synthetic biology problems.

    Read more

    Maize can produce a cocktail of antibiotics with a handful of enzymes. (Sam Fentress, CC BY-SA 2.0)
    How Maize Makes An Antibiotic Cocktail
    Zealexins are produced in every corn variety and protect maize by fending off fungal and microbial infections using surprisingly few enzymes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Poplar (Populus trichocarpa and P. deltoides) grow in the Advanced Plant Phenotyping Laboratory (APPL) at Oak Ridge National Laboratory in Tennessee. Poplar is an important biofuel feedstock, and Populus trichocarpa is the first tree species to have its genome sequenced — a feat accomplished by JGI. (Image courtesy of Oak Ridge National Laboratory, U.S. Dept. of Energy)
    Podcast: Xiaohan Yang on A Plantiful Future
    Building off plant genomics collaborations between the JGI and Oak Ridge National Laboratory, Xiaohan Yang envisions customizing plants for the benefit of human society.

    More:

    Expansin complex with cell wall in background. (Courtesy of Daniel Cosgrove)
    Synthesizing Microbial Expansins with Unusual Activities
    Expansin proteins from diverse microbes have potential uses in deconstructing lignocellulosic biomass for conversion to renewable biofuels, nanocellulosic fibers, and commodity biochemicals.

    Read more

    High oleic pennycress. (Courtesy of Ratan Chopra)
    Pennycress – A Solution for Global Food Security, Renewable Energy and Ecosystem Benefits
    Pennycress (Thlaspi arvense) is under development as a winter annual oilseed bioenergy crop. It could produce up to 3 billion gallons of seed oil annually while reducing soil erosion and fertilizer runoff.

    Read more

  • Data & Tools
    • IMG
    • Genome Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Artistic interpretation of CheckV assessing virus genome sequences from environmental samples. (Rendered by Zosia Rostomian​, Berkeley Lab)
    An Automated Tool for Assessing Virus Data Quality
    CheckV can be broadly utilized by the research community to gauge virus data quality and will help researchers to follow best practices and guidelines for providing the minimum amount of information for an uncultivated virus genome.

    More

    Unicellular algae in the Chlorella genus, magnified 1300x. (Andrei Savitsky)
    A One-Stop Shop for Analyzing Algal Genomes
    The PhycoCosm data portal is an interactive browser that allows algal scientists and enthusiasts to look deep into more than 100 algal genomes, compare them, and visualize supporting experimental data.

    More

    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Podcast: A Primer on Genome Mining
    In Natural Prodcast: the basics of genome mining, and how JGI researchers conducted it in IMG/ABC on thousands of metagenome-derived genomes for a Nature Biotechnology paper.

    Read more

  • User Programs
    • Calls for User Proposals
    • Special Initiatives & Programs
    • User Support
    • Submit a Proposal
    Image of Octopus Springs for the CSP annual call
    Letters of Intent are due April 12, 2021 for the annual Community Science Program (CSP) call focused on large-scale genomic science projects that address specific areas of special emphasis and exploit the diversity of JGI capabilities.

    Read more

    SIP engagement webinar
    “SIP technologies at EMSL and JGI” Webinar
    The concerted stable isotope-related tools and resources of the JGI and the Environmental Molecular Sciences Laboratory (EMSL) may be requested by applying for the annual “Facilities Integrating Collaborations for User Science” (FICUS) call.

    Read more

    martin-adams-unsplash
    CSP Functional Genomics Call Ongoing
    The CSP Functional Genomics call helps users translate genomic information into biological function. Proposals submitted by July 31, 2021 will be part of the next review.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    Aerial photo of the switchgrass diversity panel late in the 2020 season at the Kellogg Biological Station in Michigan. (Robert Goodwin)
    A Team Effort Toward Targeted Crop Improvements
    A multi-institutional team has produced a high-quality reference sequence of the complex switchgrass genome. Building off this work, researchers at three DOE Bioenergy Research Centers have expanded the network of common gardens and are exploring improvements to switchgrass.

    More

    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Uncovering Novel Genomes from Earth’s Microbiomes
    A public repository of 52,515 microbial draft genomes generated from environmental samples around the world, expanding the known diversity of bacteria and archaea by 44%, is now available .

    More

    Green millet (Setaria viridis) plant collected in the wild. (Courtesy of the Kellogg lab)
    Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet
    In Nature Biotechnology, a very high quality reference Setaria viridis genome was sequenced, and for the first time in wild populations, a gene related to seed dispersal was identified.

    More

Our Science
Home › Science Highlights › Corymbia Genome Expands Terpene Synthesis Knowledge

August 13, 2018

Corymbia Genome Expands Terpene Synthesis Knowledge

Corymbia citriodora subspecies citriodora is a native of north Queensland in Australia but is grown throughout the subtropics for essential oil production. (Photo by Mervyn Shepherd)

Corymbia citriodora subspecies citriodora is a native of north Queensland in Australia but is grown throughout the subtropics for essential oil production. (Photo by Mervyn Shepherd)

Genome annotations of two C. citriodora subspecies broaden understanding of the terpene synthase gene family across eucalypt lineages.

The Science

From the distinct smell of eucalyptus to the flavor of wine, terpenes are ubiquitous. A diverse group of plant-produced organic compounds, terpenes play key roles in plant growth, defense, and environmental interactions. Terpenes are also economically important because of their use in industrial materials, pharmaceutical products, and as biofuel precursors. Collectively, hundreds of terpene compounds have been characterized from eucalypts, a group of 900 tree species belonging to the Myrtaceae (myrtle) family and containing the closely-related genera Angophora, Corymbia and Eucalyptus.

The Impact

The genus Corymbia is endemic to northern Australia but is increasingly farmed in other countries for essential oil production. The recent assembly of two Corymbia citriodora subspecies variegata genomes allowed researchers to study the conservation and evolution of the genes responsible for terpene synthase (TPS) enzyme production. This family of enzymes is critical to the synthesis and broad diversity of terpenes. Until recently, studies of the TPS gene family were confined to two Eucalyptus species, E. grandis and E. globulus. The annotation of two C. citriodora subspecies provides an excellent opportunity to investigate the conservation and evolution of this important gene family across eucalypt lineages. Since terpenes serve as feedstocks for biofuel production, a greater understanding of terpene synthesis in plants will be important for alternative fuel development in the future.

Summary

Though the closely-related Eucalyptus and Corymbia species number among the eucalypts, they inhabit different environments. Eucalyptus species prefer cooler, more temperate or sub-tropical environments, while Corymbia are more abundant in the drier parts of Australia with lower quality soils and even in the desert areas with poor rainfall. That said, Corymbia can also thrive in areas that receive a lot of rain.  Previous analysis of the E. grandis reference genome, an international effort by a team that included researchers at the DOE Joint Genome Institute, a DOE Office of Science User Facility, revealed the largest number of TPS genes of any currently sequenced plant, a number closely followed by E. globulus. Occurring in clusters or duplicate arrays, these genes are prone to rapid genetic expansion which partially explains the great variety of terpene products in nature. As part of a proposal by the DOE’s Joint BioEnergy Institute (JBEI), the JGI worked on resequencing several eucalypt genomes to establish the feasibility of genome wide association studies for genetic traits that are desirable from a biofuels production perspective. By using genomic database alignment tools, researchers searched for TPS genes in C. citriodora. They then compared the list of putative genes from C. citriodora to known TPS gene sequences from Eucalyptus species and other plants. The locations of TPS genes and gene clusters were mapped against those of E. grandis to find differences in genome organization between the two species. The work was reported in the journal Heredity.

In order to understand the gene expression and function of these TPS genes, Australian researchers sequenced mRNA from different tissues of C. citriodora. From these samples, a total of 127 TPS loci were found, many of which had high sequence similarity to TPS genes from other plants. Researchers reported 102 total putative functional TPS genes in C. citriodora, which is high compared to other plants, and comparable to the number of TPS genes in E. grandis. Notably, the specific types of TPS genes found in C. citriodora suggest that these plants synthesize a high level of secondary metabolites which play a part in biotic and abiotic stress responses.

Overall, this study improves our understanding of the terpene synthase gene family and shows us that a large TPS gene family is well-conserved across eucalypts. Improved knowledge of the evolution and selection of this gene family may help researchers manipulate TPS genes to increase terpene production for biofuel development.

Contacts

Daniel Drell, Ph.D.
Program Manager
Biological Systems Sciences Division
Office of Biological and Environmental Research
Office of Science
US Department of Energy
daniel.drell@science.doe.gov

Jeremy Schmutz
Plant Program Head
DOE Joint Genome Institute
jschmutz@hudsonalpha.org

Funding

This work was supported by the Australian Research Council (grant numbers DP140102552, DP110101621), and an Australian Government Research Training Program Scholarship. Sequencing and assembly data carried out by EMBRAPA as part of the Corymbia genome project was supported by FAPDF grant “Nextree” 193.000.570/2009. For the portion of the work conducted by the Joint Genome Institute and the Joint BioEnergy Institute, support was provided by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Publication

  • Butler JB et al. Annotation of the Corymbia terpene synthase gene family shows broad conservation but dynamic evolution of physical clusters relative to Eucalyptus. 2018 Jul;121(1):87-104. doi: 10.1038/s41437-018-0058-1.

Related Links:

  • JGI news release on eucalyptus genome: https://jgi.doe.gov/just-food-koalas-eucalyptus-global-tree-fuel-fiber/
  • Eucalyptus genome on Phytozome: http://bit.ly/Phytozome-Eucalyptus
  • Video of Jerry Tuskan, ORNL scientist and CABBI CEO, on implications of Eucalyptus genome analysis: http://bit.ly/eucalyptusTuskan

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Science Highlights

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Podcasts
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

An Automated Tool for Assessing Virus Data Quality

Artistic interpretation of CheckV assessing virus genome sequences from environmental samples. (Rendered by Zosia Rostomian​, Berkeley Lab)

A One-Stop Shop for Analyzing Algal Genomes

Unicellular algae in the Chlorella genus, magnified 1300x. (Andrei Savitsky)

How Maize Makes An Antibiotic Cocktail

Maize can produce a cocktail of antibiotics with a handful of enzymes. (Sam Fentress, CC BY-SA 2.0)

From Competition to Cooperation

The genome of the common fiber vase or Thelephora terrestris was among those used in the study. (Francis Martin)

A Grass Model to Help Improve Giant Miscanthus

Miscanthus grasses. (Roy Kaltschmidt/Berkeley Lab)

In Hot Spring Microbial Mat, Viruses Ride “Piggyback”

Microbial mat under the microscope. Visible layers contain different microbial communities and minerals. The team characterized viruses in a subset of the mat layers. (John Spear)
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Emergency Info
  • Accessibility / Section 508 Statement
  • RSS feed
  • Flickr
  • LinkedIn
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2021 The Regents of the University of California