DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

User Programs
Home › Featured Profiles › Brian Hedlund, University of Nevada, Las Vegas

April 25, 2017

Brian Hedlund, University of Nevada, Las Vegas

How long have you collaborated with the JGI and on which projects?

I’ve been working with the JGI for about ten years now. To date, all of our work has focused on some aspect of life in terrestrial geothermal springs, mostly Great Boiling Spring in northeast Nevada. These projects have included work on both microbial isolates and on whole communities and yet-uncultivated microorganisms. We have sequenced a number of genomes from novel thermophiles, including novel species of Thermocrinis, Thermus, and Rhodothermus, as well as three new lineages of Chloroflexi, together representing two new classes, Thermoflexi and “Planoflexi”, and a new order, Kallotenuales. We have followed up with the novel Chloroflexi strains some functional genomics studies. That work involves the separation and identification of media components before and after cultivation (the exometabolome), which gives us a very detailed look at what compounds are utilized and produced. The exometabolomics work has been a great complement to our genomics work and standard cultivation studies and has led to some very interesting surprises that weren’t predicted from the annotated genomes. This work gives us a much better understanding of the metabolisms of these organisms and may give us better insights into media components necessary to cultivate Chloroflexi and/or difficult-to- cultivate microorganisms in general.

Additionally, we have also collaborated on microbial community work and yet-uncultivated microorganisms. The community work has led to, to our knowledge, the first quantitative relationships between microbial diversity and temperature. Additionally, that work has given us much-needed genomic insights into natural microbial communities in natural geothermal systems  as well as systems degrading biofuels substrates. Arguably the most impactful work has been on the genomic exploration of novel, deep branches on the phylogenetic tree through both metagenomics and single-cell genomics. This work has been part of the Genomic Encyclopedia of Bacteria and Archaea-Microbial Dark Matter (GEBA-MDM) project.

Why is this research important?

Brian Hedlund, University of Nevada, Las Vegas

Brian Hedlund, School of Life Sciences, University of Nevada, Las Vegas

I’m proud to say that our work is significantly contributing to our knowledge of biodiversity on Earth, which is the central goal of the GEBA-MDM project and its predecessor, the GEBA project, which focused on microbial isolate genomes. Humans have always had a knack for exploration and we are exploring biodiversity here on Earth the best way we know how. This information makes its way into the textbooks and changes the way students think about life. The data we generate are also very important baseline data for biotechnology applications and hopefully biofuels applications.

What do you value about JGI’s contributions?

JGI has greatly expanded the scope of my lab’s research. I can honestly say that working with JGI has transformed my career. JGI has fantastic facilities and bright, collaborative, and forward-thinking scientists. This combination, along with JGI’s experience planning and executing bold and aggressive projects has moved my science way beyond it would be without JGI. Plus, they’re all great people!

References: (https://faculty.unlv.edu/hedlund/accomplishments.html)

  • Cole JK, Peacock JP, Dodsworth JA, Williams AJ, Thompson DB, Dong H, Wu G, Hedlund BP. 2013. Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities. ISME Journal 7:718-729.
  • Dodsworth JA, Blainey PC, Murugapiran SK, Swingley WD, Ross CA, Tringe SG, Chain PS, Scholz MB, Lo CC, Raymond J, Quake SR, Hedlund BP. 2013. Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nature Communications. 4:1854.
  • Hedlund BP, Murugapiran SK, Huntemann M, Clum A, Pillay M, Palaniappan K, Varghese N, Mikhailova N, Stamatis D, Reddy TB, Ngan CY, Daum C, Duffy K, Shapiro N, Markowitz V, Ivanova N, Kyrpides N, Williams AJ, Cole JK, Dodsworth JA, Woyke T. 2015. High-quality draft genome sequence of Kallotenue papyrolyticum JKG1T reveals broad heterotrophic capacity focused on carbohydrate and amino acid metabolism. Genome Announcements. 3:e01410-15.
  • Hedlund BP, Dodsworth JA, Murugapiran SK, Rinke C, Woyke T. 2014. Impact of single-cell genomics and metagenomics on the emerging view of extremophile “microbial dark matter”. Extremophiles. 18:865-875.
  • Nobu M, Dodsworth J, Murugapiran S, Rinke C, Gies E, Webster G, Schwientek P, Kille P, Parkes J, Sass H, Jorgensen B, Weightman A, Liu W, Hallam S, Tsiamis G, Woyke T, Hedlund BP. 2015. Phylogeny and physiology of candidate phylum ‘Atribacteria’ (OP9/JS1) inferred from cultivation-independent genomics. ISME Journal. 10:273-286.
  • Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu WT, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T. 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 499:431-437.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Featured Profiles

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Kelly Wrighton, Colorado State University

Kelly Wrighton JGI value cropped screencap

Tobias Erb, Max Planck Institute for Terrestrial Microbiology

Tobias Erb, MPI Marburg (Courtesy of Tobias Erb)

Colleen Hansel, Woods Hole Oceanographic Institute

Colleen Hansel, fungal collaborator at WHOI

J. Chris Pires, University of Missouri

J. Chris Pires, University of Missouri

Cat Adams, University of California, Berkeley

Cat Adams, UC Berkeley

C. Titus Brown, University of California, Davis

C. TItus Brown, UC Davis on collaborating with the JGI
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California