DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › 10 New Projects to be Supported Under Joint DOE User Facility Initiative

September 6, 2016

10 New Projects to be Supported Under Joint DOE User Facility Initiative

The U.S. Department of Energy Joint Genome Institute (DOE JGI) and the Environmental Molecular Sciences Laboratory (EMSL) have accepted 10 projects submitted during the 2017 call for proposals for their joint “Facilities Integrating Collaborations for User Science” (FICUS) initiative.

This diagram from Petr Baldrian’s proposal shows the seasonal differences in the carbon cycle processes in the temperate and boreal coniferous forests. During vegetation seasons, depicted by September on the left, photosynthesis products are allocated to soil via tree roots. When photosynthesis stops in winter, depicted by March on the right, decomposition is the most important carbon cycle process. (Image courtesy of Petr Baldrian)

This diagram from Petr Baldrian’s proposal shows the seasonal differences in the carbon cycle processes in the temperate and boreal coniferous forests. During vegetation seasons, depicted by September on the left, photosynthesis products are allocated to soil via tree roots. When photosynthesis stops in winter, depicted by March on the right, decomposition is the most important carbon cycle process. (Image courtesy of Petr Baldrian)

These new research projects all involve collaboration between two user facilities that are stewarded by the DOE Office of Biological and Environmental Research and integrate the expertise and capabilities to address pressing questions in support of DOE’s energy, environment and basic research missions. The FICUS initiative represents a unique opportunity for scientists to harness the combined power of genomics and molecular characterization in a single proposed research project. The researchers, whose projects were selected by outside reviewers, will access the capabilities of both user facilities to generate datasets unique to these two providers of critical infrastructure – deriving benefits beyond what could be generated by either facility by itself.

The accepted proposals will begin on October 1, 2016 and fall under the following focused topic areas: Plant-Microbe Interactions, Biofuels and Bioproducts, and Biogeochemistry of Select Inorganics.

Several projects focus on the response of soil microbial communities in various ecosystems:

  • Jeffrey Blanchard of University of Massachusetts Amherst and his colleagues aim to determine which metabolic processes are active in soil communities in response to increased temperature, and which microbes are responsible for increased carbon dioxide flux through heavy water labeling of the active biota. How soil microbial communities respond to climate change could change the soil’s role from carbon sink to carbon source. Understanding the ecological function of soil communities in their natural environment is essential in ecosystem modeling.
  • Virginia Rich of The Ohio State University is interested in the implications of the predicted thawing of the northern permafrost. Using a well-studied “model ecosystem” of permafrost thaw she and her colleagues intend to look at the pathways for carbon loss in thawing permafrost, and metabolic changes in peatland microbial communities that are regulating the carbon flux.
  • Kelly Wrighton of The Ohio State University is interested in how warming temperatures are allowing more shrubs to grow in the Arctic, which results in an increase in condensed tannins and other molecules that could inhibit microbial degradation of carbon. To learn more about the impact of these molecules on the soil and ruminant microbial communities found in the regional ecosystem, she and her team aims to use Alaskan willows to recreate a model condensed tannins pathway that can be used to test relevant arctic microbial communities.
In this diagram from Virginia Rich’s proposal, the team aims to characterize extracts of the litter of the dominant plant species in each habitat. Permafrost thaw drives successional changes in the overlying plant communities, with dramatic shifts in dominant species. These in turn change the amount and composition of new carbon inputs to the soil column. (Image courtesy of Virginia Rich)

In this diagram from Virginia Rich’s proposal, the team aims to characterize extracts of the litter of the dominant plant species in each habitat. Permafrost thaw drives successional changes in the overlying plant communities, with dramatic shifts in dominant species. These in turn change the amount and composition of new carbon inputs to the soil column. (Image courtesy of Virginia Rich)

Two projects involving soil communities are focused on the interactions involving conifers and ecotmycorrhizal fungi:

  • Petr Baldrian of the Academy of Sciences of the Czech Republic is studying soil and leaf litter microbes in coniferous forests to learn more about nitrogen availability on carbon cycle-related processes. Through metabolomics analyses, researchers hope to identify drivers of seasonal changes in microbial function — both inside and outside the tree root — as well as the interplay between tree roots and their symbiont fungi. Additionally, the fungal genomes that are being obtained through the DOE JGI’s 1000 Fungal Genomes Program are expected to provide ecological perspectives.
  • Hui-Ling Liao of Duke University is studying the symbiotic interactions between conifers and ectomycorrhizal Suillus fungi found in the roots and rhizosphere soil. This team aims to better define the roles these species play in soil nutrient turnover.

Other projects focus on coastal marine environments:

  • Tom Bianchi of University of Florida is interested in a phenomenon known as the “priming effect” that is well-studied in soils but poorly understood in the marine environment. Along the Florida coastline are mangroves, salt marshes and seagrasses that trap “blue carbon” or organic carbon derived from and stored in coastal and marine environments. Lab experiments show that in the presence of highly reactive substrates, dissolved organic carbon breaks down up to 75 times faster during the first 24 hours. One of the team’s questions is how the priming effect might influence blue carbon stores impacted by rising sea levels and the corresponding loss of wetlands.
  • Rose Ann Cattolico of the University of Washington is interested in the alga Chrysochromulina tobin and its 10-member bacterial biome, 8 of which have already been sequenced. The team aims to understand the roles of this alga-bacterial consortium in processes including carbon fixation and nitrogen processing, as well as how changing ocean salinity impacts the metabolic interplay in this alga-bacterial consortium.
In this diagram from Kelly Wrighton’s proposal, willow leaves containing condensed tannins (CT) are eaten by moose or become part of the leaf litter, and impact the soil (pink) and rumen (orange) microbial processes. Data gathered from this study would shed light on additional enzymes, metabolites and pathways aside from CT pathways, shown in the gray box. (Image courtesy of Kelly Wrighton)

In this diagram from Kelly Wrighton’s proposal, willow leaves containing condensed tannins (CT) are eaten by moose or become part of the leaf litter, and impact the soil (pink) and rumen (orange) microbial processes. Data gathered from this study would shed light on additional enzymes, metabolites and pathways aside from CT pathways, shown in the gray box. (Image courtesy of Kelly Wrighton)

Two projects are focused on generating biofuels from biomass:

  • Laura Bartley of the University of Oklahoma is interested in secondary cell wall development in grasses. While grass cell walls are among the most abundant potential biomass sources for biofuel production, the process of breaking down cell walls limits available biomass for conversion to sugars.
  • Jeffrey Skerker of UC Berkeley wants to understand how biomass-derived carbon is converted into lipids and terpenoids in the yeast Rhodosporidium toruloides, and how carbon flux is regulated in this organism. Through a systems biology-level study, his team aims to develop R. toruloides into a novel metabolic engineering platform organism that can convert biomass-derived products into biofuels and bioproducts.

One project is focused on biogeochemistry:

  • Scott Fendorf of Stanford University is interested in the persistence of contaminants in groundwater. Focusing on the Colorado River Basin, where legacy contamination has left floodplains with uranium traces, his team aims to learn about the metabolic constraints of organic matter decomposition in floodplain sediments, and how this regulation of the carbon cycle impacts metal cycling.

The full list of approved projects is available at http://jgi.doe.gov/our-projects/csp-plans/ficus-plans-fy-2017/.

***

EMSL, the Environmental Molecular Sciences Laboratory, is a DOE Office of Science User Facility. Located at Pacific Northwest National Laboratory in Richland, Wash., EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. Its integrated computational and experimental resources enable researchers to realize important scientific insights and create new technologies. Follow EMSL on Facebook, LinkedIn and Twitter.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.

JGI announces final round of 2022 Functional Genomics awardees

Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!

Introducing New Members of the JGI User Executive Committee

incoming 2023 UEC members

JGI at 25: Mapping Switchgrass Traits with Common Gardens

Aerial photo of the switchgrass diversity panel late in the 2020 season at the Kellogg Biological Station in Michigan. (Robert Goodwin)

JGI Contributes Nine to 2022 Highly Cited Researchers List

Nine headshots, one for each researcher, laid out beside a purple ribbon reading, "Home to Highly Cited Researchers 2022 Clarivate"
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California