DOE Joint Genome Institute

  • COVID-19
  • About
  • Phones
  • Contacts
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Products
    • Science Highlights
    • Scientists
    Screencap of green algae video for PNAS paper
    Green Algae Reveal One mRNA Encodes Many Proteins
    A team of researchers has found numerous examples of polycistronic expression – in which two or more genes are encoded on a single molecule of mRNA – in two species of green algae.

    Read more

    Advances in Rapidly Engineering Non-model Bacteria
    CRAGE is a technique for chassis (or strain)-independent recombinase-assisted genome engineering, allowing scientists to conduct genome-wide screens and explore biosynthetic pathways. Now, CRAGE is being applied to other synthetic biology problems.

    Read more

    Maize can produce a cocktail of antibiotics with a handful of enzymes. (Sam Fentress, CC BY-SA 2.0)
    How Maize Makes An Antibiotic Cocktail
    Zealexins are produced in every corn variety and protect maize by fending off fungal and microbial infections using surprisingly few enzymes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Poplar (Populus trichocarpa and P. deltoides) grow in the Advanced Plant Phenotyping Laboratory (APPL) at Oak Ridge National Laboratory in Tennessee. Poplar is an important biofuel feedstock, and Populus trichocarpa is the first tree species to have its genome sequenced — a feat accomplished by JGI. (Image courtesy of Oak Ridge National Laboratory, U.S. Dept. of Energy)
    Podcast: Xiaohan Yang on A Plantiful Future
    Building off plant genomics collaborations between the JGI and Oak Ridge National Laboratory, Xiaohan Yang envisions customizing plants for the benefit of human society.

    More:

    Expansin complex with cell wall in background. (Courtesy of Daniel Cosgrove)
    Synthesizing Microbial Expansins with Unusual Activities
    Expansin proteins from diverse microbes have potential uses in deconstructing lignocellulosic biomass for conversion to renewable biofuels, nanocellulosic fibers, and commodity biochemicals.

    Read more

    High oleic pennycress. (Courtesy of Ratan Chopra)
    Pennycress – A Solution for Global Food Security, Renewable Energy and Ecosystem Benefits
    Pennycress (Thlaspi arvense) is under development as a winter annual oilseed bioenergy crop. It could produce up to 3 billion gallons of seed oil annually while reducing soil erosion and fertilizer runoff.

    Read more

  • Data & Tools
    • IMG
    • Genome Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Artistic interpretation of CheckV assessing virus genome sequences from environmental samples. (Rendered by Zosia Rostomian​, Berkeley Lab)
    An Automated Tool for Assessing Virus Data Quality
    CheckV can be broadly utilized by the research community to gauge virus data quality and will help researchers to follow best practices and guidelines for providing the minimum amount of information for an uncultivated virus genome.

    More

    Unicellular algae in the Chlorella genus, magnified 1300x. (Andrei Savitsky)
    A One-Stop Shop for Analyzing Algal Genomes
    The PhycoCosm data portal is an interactive browser that allows algal scientists and enthusiasts to look deep into more than 100 algal genomes, compare them, and visualize supporting experimental data.

    More

    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Podcast: A Primer on Genome Mining
    In Natural Prodcast: the basics of genome mining, and how JGI researchers conducted it in IMG/ABC on thousands of metagenome-derived genomes for a Nature Biotechnology paper.

    Read more

  • User Programs
    • Calls for User Proposals
    • Special Initiatives & Programs
    • User Support
    • Submit a Proposal
    screencap long reads webinar_ Metagenome Program
    Utilizing long-read sequencing for metagenomics and DNA modification detection webinar
    Watch the webinar on how the JGI employs single-molecule, long-read DNA sequences to aid with genome assembly and transcriptome analysis of microbial, fungal, and plant research projects.

    More

    SIP engagement webinar
    “SIP technologies at EMSL and JGI” Webinar
    The concerted stable isotope-related tools and resources of the JGI and the Environmental Molecular Sciences Laboratory (EMSL) may be requested by applying for the annual “Facilities Integrating Collaborations for User Science” (FICUS) call.

    Read more

    martin-adams-unsplash
    CSP Functional Genomics Call Ongoing
    The CSP Functional Genomics call helps users translate genomic information into biological function. Proposals submitted by July 31, 2021 will be part of the next review.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    Aerial photo of the switchgrass diversity panel late in the 2020 season at the Kellogg Biological Station in Michigan. (Robert Goodwin)
    A Team Effort Toward Targeted Crop Improvements
    A multi-institutional team has produced a high-quality reference sequence of the complex switchgrass genome. Building off this work, researchers at three DOE Bioenergy Research Centers have expanded the network of common gardens and are exploring improvements to switchgrass.

    More

    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Uncovering Novel Genomes from Earth’s Microbiomes
    A public repository of 52,515 microbial draft genomes generated from environmental samples around the world, expanding the known diversity of bacteria and archaea by 44%, is now available .

    More

    Green millet (Setaria viridis) plant collected in the wild. (Courtesy of the Kellogg lab)
    Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet
    In Nature Biotechnology, a very high quality reference Setaria viridis genome was sequenced, and for the first time in wild populations, a gene related to seed dispersal was identified.

    More

User Programs
Home › User Programs › User Program Info › CSP Overview › CSP Functional Genomics

CSP Functional Genomics

About This Call

The CSP Functional Genomics call is to enable users to perform state-of-the-art functional genomics research and to help them translate genomic information into biological function. The emphasis is on projects leveraging JGI capabilities to enhance understanding of gene and genome function, particularly those not readily achievable without the capabilities and expertise available at the JGI.

Proposals to this call may be submitted to the JGI at any time using a simple web-based form (begin a new proposal document at proposals.jgi.doe.gov to see the proposal format) and are reviewed twice a year. All proposals will undergo an internal pre-review to ensure technical feasibility and alignment with JGI and DOE missions. Screened proposals will be reviewed for scientific merit, DOE relevance, feasibility and impact.  Applicants are encouraged to review the Synthetic Biology Internal Review Process guidelines, as insufficient information will delay or potentially defer approval for the proposal.

570 JGI functional genomics webinar

For questions about whether your project is appropriate, or for program specifics or technical guidance, please contact Yasuo Yoshikuni (DNA synthesis program head), Trent Northen (metabolomics group lead), Tanja Woyke, Interim Deputy for User Programs, or Miranda Harmon-Smith (project manager).  For questions about the application process, please contact Miranda Harmon-Smith.

Watch the  JGI Engagement: Accessing Functional Genomics Capabilities Webinar hosted by the DNA Synthesis Science group. The webinar invites researchers to submit white papers to the Community Science Program’s Functional Genomics call for proposals. 

Current Call (OPEN)

The current call for proposals offers multiple capabilities, as described below:

1) Synthesis of genes and pathways for functional characterization. A single proposal can request a total of 100 to 500 kb of DNA synthesis capacity per proposal. A consortium (with co-PIs from at least 3 different institutions) can request up to 1,500 kb. All constructs are synthesized and assembled into user-defined plasmids, sequence validated, and transformed into an E. coli strain before shipment to users. The products are delivered to users as glycerol stocks. Projects requiring specific nucleotide sequences (such as those required for homology-based recombination) may experience lower successful assemblies due to difficulties in synthesizing precise DNA sequences in the absence of refactoring. Therefore, we may have to adjust the scope of the project depending on the complexity of the sequence constraints. Prospective users are encouraged to contact JGI staff to discuss.

2) Synthesis of combinatorial pathway libraries for fast-track metabolic engineering. Each proposal may request up to 500 kb of DNA de novo synthesis capacity to produce millions of basepairs of combinatorial variants. The JGI will also help identify a panel of each pathway component and design final constructs. All constructs are assembled using type II restriction-enzyme-based technologies (e.g., golden gate assembly) into user-defined plasmids and are transformed into E. coli strains before shipment to users; no sequencing validations will be performed for the constructs. The products are delivered to users as glycerol stocks.

3) Synthesis of sgRNA libraries.  Each proposal may request up to six libraries comprising up to 12,000 sgRNA sequences per library, or more than six libraries with less degree of variants per library. The JGI can help design sgRNA sequences based on the genome sequences of targeted microbes. All sgRNA constructs are synthesized, cloned into user-defined plasmids, and transformed into an E. coli strain as pools. The quality of these libraries is evaluated with sequencing-based analysis using MiSeq before shipment to users. The JGI will deliver the libraries to users as glycerol stocks.  The subsequent transformation into the targeted microbes and functional screenings will be performed by users. The JGI can further evaluate enriched sgRNA libraries with sequencing-based analysis using MiSeq.

4) Strain Engineering: Genomic Integration of Synthetic Constructs into a Set of Bacterial Strains.  JGI is offering a limited capacity of Chassis-independent recombinase-assisted genome engineering (CRAGE) to users. This technology enables integration of large, complex genetic constructs directly into the chromosomes of diverse gamma-proteobacteria with high accuracy and efficiency. Proposals may request up to 96 constructs to be cloned into a CRAGE compatible vector under the control of a T7 promoter and conjugated into a maximum of 5 gamma-proteobacteria hosts.  We currently do not offer domestication of new strains to users. 

The current list of preferred microbial species offered through this call include:    

Pseudomonas putida KT2440                 

Erwinia oleae DAPP-PG531

Yersinia aldovae ATCC 35236

Aeromonas piscicola LMG

Dickeya solani

It is recommended that you contact Yasuo Yoshikuni (DNA synthesis program head) to discuss the desired strains prior to submitting your proposal as there may be alternative strains that can be used.

Reference: CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria https://www.nature.com/articles/s41564-019-0573-8

For additional information (literature citations, video), see this CRAGE blog post.

Applicants are also invited to request one or more other JGI functional genomics capabilities listed below.

5) Sequence data mining. The JGI’s genome portals IMG, Mycocosm and Phytozome contain a wealth of genomic data from microbes, fungi, plants and microbiomes.  Proposals may request assistance with database searches for the selection of target genes and pathways for synthesis. However, capacity for analyzing search results and aiding in target selection is very limited; users needing assistance with these tasks should contact JGI in advance to discuss feasibility.

6) Metabolomics based functional analyses. Metabolomic technologies at JGI enable users to examine diverse polar and non-polar metabolites from plants, microbes, and environments. In addition, users may request targeted analysis of stable isotope labeling for specific metabolites. Proposals should clearly indicate how the data obtained will be linked to gene function, and may request up to 50 polar metabolite sample analyses or 150 non-polar metabolite sample analyses.

7) Mapping of transcription factor binding sites. High-throughput mapping of putative transcription binding sites enables large-scale characterization of gene regulatory networks in a selected species. Proposals can request in vitro transcription factor binding site mapping by DNA affinity purification sequencing (DAP-seq) for up to 50 transcription factors. DNA/gene synthesis should also be requested for construction of affinity-tagged transcription factor clones used in the assay.

8) RNA-seq. Transcriptional profiling can aid in characterizing gene regulatory pathways activated in response to perturbations or environmental stimuli.  Proposals may request RNA sequencing of up to 54 samples from plants, fungi or microbes for the purpose of testing gene function or elucidating regulatory networks.

Proposal Schedule

CSP Functional Genomics proposals are accepted on a continuous basis and will be reviewed twice a year. Submission deadline for reach review process is listed below. Letters of intent are not required.

Submission deadlines:

  • July 31, 2021
  • January 31, 2022

Proposal Review Process

All proposals undergo scientific review as described at https://jgi.doe.gov/user-programs/program-info/csp-review-process-and-contract-documents/.  In addition, proposals requesting DNA synthesis that are tentatively approved will undergo an additional review of potential impacts as described below prior to project initiation.

Proposals requesting DNA synthesis are evaluated by at least three external reviewers in a process known as Synthetic Biology Internal Review (SBIR). SBIR encourages investigators to extensively consider broader aspects of their research (e.g., biosafety, biosecurity, bio-containment and environmental issues) to evaluate both positive and negative impacts and to propose strategies to mitigate concerns. If issues are not sufficiently addressed, users will be asked to modify their proposal. If issues are not resolved, the proposal may be rejected. SBIR generally takes three weeks.

Investigators should not merely write “None” or “All research will be conducted in a safe manner according to Federal regulations” in the broader implications statement, as this will lead to requests for proposal modifications, incurring delays of three weeks or longer.

Investigators must explicitly state whether their proposed research would:

  • Demonstrate how to make a vaccine ineffective
  • Confer resistance to antibiotics or antiviral agents
  • Enhance a pathogen’s virulence or make a non-virulent microbe virulent
  • Increase transmissibility of a pathogen
  • Alter the host range of a pathogen
  • Enable a pathogen’s ability to evade diagnostic or detection modalities
  • Enable the weaponization of a biological agent or toxin

 

  • Calls for User Proposals
  • CSP Overview
    • CSP Annual Call
    • CSP New Investigator
    • CSP Functional Genomics
  • FICUS Overview
  • Closed Calls
  • Review Process and Scoring Criteria
  • DOE Mission Relevance
  • FAQ

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Podcasts
  • Webinars
  • CSP Plans
  • Featured Profiles
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Emergency Info
  • Accessibility / Section 508 Statement
  • RSS feed
  • Flickr
  • LinkedIn
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2021 The Regents of the University of California