DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

    Artist rendering of genome standards being applied to deciphering the extensive diversity of viruses. (Illustration by Leah Pantea)
    Expanding Metagenomics to Capture Viral Diversity
    Along with highlighting the viruses in a given sample, metagenomics shed light on another key aspect of viruses in the environment — their sheer genetic diversity.

    More

    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    CSP New Investigators FY23 R1
    JGI Announces First Round of 2023 New Investigator Awardees
    Twice each year we look for novel research projects aligned with DOE missions and from PIs who have not led any previously-accepted proposals through the CSP New Investigator call.

    More

    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

User Programs
Home › User Programs › User Program Info › CSP Overview › CSP Functional Genomics

CSP Functional Genomics

About This Call

The CSP Functional Genomics call is to enable users to perform state-of-the-art functional genomics research and to help them translate genomic information into biological function. The emphasis is on projects leveraging JGI’s DNA synthesis and ‘omics capabilities to enhance understanding of gene and genome function, particularly those not readily achievable without the capabilities and expertise available at the JGI.

Proposals to this call may be submitted to the JGI at any time using a simple web-based form (begin a new proposal document at proposals.jgi.doe.gov to see the proposal format) and are reviewed twice a year. All proposals will undergo an internal pre-review to ensure technical feasibility and alignment with JGI and DOE missions. Screened proposals will be reviewed for scientific merit, DOE relevance, feasibility and impact.  Applicants are encouraged to review the Synthetic Biology Internal Review Process guidelines, as insufficient information will delay or potentially defer approval for the proposal.

570 JGI functional genomics webinar

For accepted proposals, sequencing, synthesis, metabolomics and analysis will be paid for by the Department of Energy’s funding of the JGI. There is no cost to the user and no granting of funds.

For questions about whether your project is appropriate, or for program specifics or technical guidance, please contact Yasuo Yoshikuni (DNA synthesis program head), Trent Northen (metabolomics group lead), Tanja Woyke, Deputy for User Programs, or Miranda Harmon-Smith (project manager).  For questions about the application process, please contact Miranda Harmon-Smith.

Watch the  JGI Engagement: Accessing Functional Genomics Capabilities Webinar hosted by the DNA Synthesis Science group. The webinar invites researchers to submit white papers to the Community Science Program’s Functional Genomics call for proposals. 

Current Call (OPEN)

The current call for proposals offers multiple capabilities, as described below:

1) Synthesis of genes and pathways for functional characterization. A single proposal can request a total of 100 to 500 kb of DNA synthesis capacity per proposal. A consortium (with co-PIs from at least 3 different institutions) can request up to 1,500 kb. All constructs are synthesized and assembled into user-defined plasmids, sequence validated, and transformed into an E. coli strain before shipment to users. The products are delivered to users as glycerol stocks. Projects requiring specific nucleotide sequences (such as those required for homology-based recombination) may experience lower successful assemblies due to difficulties in synthesizing precise DNA sequences in the absence of refactoring. Therefore, we may have to adjust the scope of the project depending on the complexity of the sequence constraints. Prospective users are encouraged to contact JGI staff to discuss.

2) Synthesis of combinatorial pathway libraries for fast-track metabolic engineering. Each proposal may request up to 500 kb of DNA de novo synthesis capacity to produce millions of basepairs of combinatorial variants. The JGI will also help identify a panel of each pathway component and design final constructs. All constructs are assembled using type II restriction-enzyme-based technologies (e.g., golden gate assembly) into user-defined plasmids and are transformed into E. coli strains before shipment to users; no sequencing validations will be performed for the constructs. The products are delivered to users as glycerol stocks.

3) Synthesis of sgRNA libraries.  Each proposal may request up to six libraries comprising up to 12,000 sgRNA sequences per library, or more than six libraries with less degree of variants per library. The JGI can help design sgRNA sequences based on the genome sequences of targeted microbes. All sgRNA constructs are synthesized, cloned into user-defined plasmids, and transformed into an E. coli strain as pools. The quality of these libraries is evaluated with sequencing-based analysis using MiSeq before shipment to users. The JGI will deliver the libraries to users as glycerol stocks.  The subsequent transformation into the targeted microbes and functional screenings will be performed by users. The JGI can further evaluate enriched sgRNA libraries with sequencing-based analysis using MiSeq.

4) Strain Engineering: Genomic Integration of Synthetic Constructs into a Set of Bacterial Strains.  JGI is offering a limited capacity of Chassis-independent recombinase-assisted genome engineering (CRAGE) to users. This technology enables integration of large, complex genetic constructs directly into the chromosomes of diverse gamma-proteobacteria with high accuracy and efficiency. Proposals may request up to 96 constructs to be cloned into a CRAGE compatible vector under the control of a T7 promoter and conjugated into a maximum of 5 gamma-proteobacteria hosts.  We currently do not offer domestication of new strains to users. 

The current list of preferred microbial species offered through this call include:    

Pseudomonas putida KT2440    

Pantoea agglomerans ATCC 13460 (Eh1087 (ICMP 13301))

Dickeya solani DSM 28711

Yersinia aldovae DSM 18303

Aeromonas piscicola LMG 24783

Photorhabdus luminescens laumondii TTO1

Shewanella oneidensis MR-1

Photobacterium halotolerans DSM 18316           

Reference: CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria https://www.nature.com/articles/s41564-019-0573-8

For additional information (literature citations, video), see this CRAGE blog post.

Applicants are also invited to request one or more other JGI functional genomics capabilities listed below.

5) Sequence data mining. The JGI’s genome portals IMG, Mycocosm and Phytozome contain a wealth of genomic data from microbes, fungi, plants and microbiomes.  Proposals may request assistance with database searches for the selection of target genes and pathways for synthesis. However, capacity for analyzing search results and aiding in target selection is very limited; users needing assistance with these tasks should contact JGI in advance to discuss feasibility.

6) Metabolomics based functional analyses. Metabolomic technologies at JGI enable users to examine diverse polar and non-polar metabolites from plants, microbes, and environments. In addition, users may request targeted analysis of stable isotope labeling for specific metabolites. Proposals should clearly indicate how the data obtained will be linked to gene function, and may request up to 50 polar metabolite sample analyses or 150 non-polar metabolite sample analyses.

7) Mapping of transcription factor binding sites (DAP-seq). High-throughput mapping of putative transcription binding sites enables large-scale characterization of gene regulatory networks in a selected species. Proposals can request in vitro transcription factor binding site mapping by DNA affinity purification sequencing (DAP-seq) for between 70-92 transcription factors. DNA/gene synthesis should also be requested for construction of affinity-tagged transcription factor clones used in the assay.

8) RNA-seq. Transcriptional profiling can aid in characterizing gene regulatory pathways activated in response to perturbations or environmental stimuli.  Proposals may request RNA sequencing of between 22 and 92 samples (including replicates) from plants, algae, fungi, or microbes for the purpose of testing gene function or elucidating regulatory networks.

9) EcoFAB pilot projects. The JGI can provide up to 50 EcoFAB devices (https://eco-fab.org/) to study plant-microbiome interactions. These devices allow for non-destructive root imaging and sampling of the growth media while maintaining a sterile environment. In addition, the JGI can provide a standardized defined microbial community that colonizes plant roots and Brachypodium germplasm, if desired. Users would conduct experiments using these resources and return samples to the JGI for analysis by existing JGI capabilities e.g. metabolomics and transcriptomics.

Proposal Schedule

CSP Functional Genomics proposals are accepted on a continuous basis and will be reviewed twice a year. Submission deadline for reach review process is listed below. Letters of intent are not required.

Submission deadlines:

  • July 31, 2023
  • January 29, 2024

Proposal Review Process

All proposals undergo scientific review as described at https://jgi.doe.gov/user-programs/program-info/csp-review-process-and-contract-documents/.  In addition, proposals requesting DNA synthesis that are tentatively approved will undergo an additional review of potential impacts as described below prior to project initiation.

Proposals requesting DNA synthesis are evaluated by at least three external reviewers in a process known as Synthetic Biology Internal Review (SBIR). SBIR encourages investigators to extensively consider broader aspects of their research (e.g., biosafety, biosecurity, bio-containment and environmental issues) to evaluate both positive and negative impacts and to propose strategies to mitigate concerns. If issues are not sufficiently addressed, users will be asked to modify their proposal. If issues are not resolved, the proposal may be rejected. SBIR generally takes three weeks.

Investigators should not merely write “None” or “All research will be conducted in a safe manner according to Federal regulations” in the broader implications statement, as this will lead to requests for proposal modifications, incurring delays of three weeks or longer.

Investigators must explicitly state whether their proposed research would:

  • Demonstrate how to make a vaccine ineffective
  • Confer resistance to antibiotics or antiviral agents
  • Enhance a pathogen’s virulence or make a non-virulent microbe virulent
  • Increase transmissibility of a pathogen
  • Alter the host range of a pathogen
  • Enable a pathogen’s ability to evade diagnostic or detection modalities
  • Enable the weaponization of a biological agent or toxin

 

  • Calls for User Proposals
  • CSP Overview
    • CSP Annual Call
    • CSP New Investigator
    • CSP Functional Genomics
  • FICUS Overview
  • Closed Calls
  • Review Process and Scoring Criteria
  • DOE Mission Relevance
  • FAQ

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California