DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

User Programs
Home › User Programs › User Program Info › Closed Calls › CSP FY19

CSP FY19

CSP FY2019 (Status: CLOSED)

The DOE JGI’s Community Science Program (CSP) is now accepting Letters of Intent for large-scale sequence-based genomic science projects that address questions of relevance to DOE Biological and Environmental Research (BER) missions in sustainable biofuel production, global carbon cycling, and biogeochemistry. While applications will be accepted that address any aspect of the DOE mission areas, special consideration will be given to projects that address the following areas of emphasis and exploit the diversity of DOE JGI capabilities.

I. Plant Functional Genomics and Microbiomes:

The DOE JGI has produced several “flagship plant genomes” including sorghum, Brachypodium, and Physcomitrella and is developing genomes for emerging flagship plant species including switchgrass and Miscanthus. These species are of special interest as potential biofuel feedstocks or as comparators that provide insight into feedstock evolution and phenotype, and projects that directly relate to these genomes are encouraged. For all plant proposals, priority will be given to multi-organism proposals that 1) seek to compare among plants and/or analyze plant-microbiome interactions, and/or 2) are of a large, collaborative nature with multiple participating investigators. Projects of interest may fall into one of the following four categories:

a) Gene Atlas and ENCODE-like projects – The DOE JGI is currently committed to sequencing flagship plant transcriptomes under a variety of experimental conditions for different plant tissues and developmental stages. New proposals are encouraged that expand the experimental conditions or plants to be studied and extend functional studies beyond straightforward transcriptomics. This includes proposals aimed at the generation of genome-wide annotation of gene regulatory sequences, similar to the NIH-funded ENCODE encyclopedia of DNA elements in the human genome (See core capabilities below for available assays).

b) Large-scale germplasm resequencing – We invite germplasm resequencing projects aimed at 1) understanding natural population structure of the genus/species, 2) creating a foundation for large scale GWAS projects for gene discovery, or 3) developing pan and core genomes to determine a complete picture of gene content within the genus/species. Studies must target mission relevant plants with existing high quality genomes.

c) High quality or comparative grade de novo genomes – We invite proposals for whole genome sequencing of species that can be used for comparative genomics studies with the DOE JGI flagship species. Proposals should justify the relevance as comparators, including enabling the identification of conserved and selected DNA elements and increasing our ability to infer gene function across plant phylogenetic space. Requests for high quality genomes must clearly indicate the size of the user community and what BER mission related science will be enabled above and beyond what could be accomplished with a comparative grade draft.

d) Plant microbiomes – We encourage projects to study the microbiomes of BER mission relevant plants. Proposals aimed at characterizing secondary metabolite biosynthetic pathways in plants and/or associated microbes are specifically encouraged, as are hypothesis-driven projects deciphering functional and phylogenetic changes of natural or synthetic communities upon manipulation of the host and/or host environment. We encourage proposal submitters to consider using KBase to model these interactions.

II. Inter-organismal interactions: 

A key focus for DOE JGI is understanding the mutualistic, competitive or antagonistic interactions among microorganisms, macroorganisms, and viruses. Projects that could address this focus include:

a) Investigation of the genomic basis of microbial mutualism and microbe-microbe interactions in stable model communities, e.g. enrichment cultures or synthetic communities.

b) Functional and chemical characterization of secondary metabolites that are involved in inter-organism interactions, leveraging sequencing, synthetic biology, transcriptomics, and metabolomics.

c) Function-driven single-cell genomics and metagenomics, e.g. sequencing of stable isotope-labeled DNA or selectively sorted single cells to assign functional roles to populations within communities.

d) Genomic investigation of viral evolution and host specificity.

III. Microbes and communities involved in elemental cycling in terrestrial and coastal environments

Bacteria, archaea, fungi and algae are important consumers and producers of greenhouse gases in the environment. While a nascent understanding of nutrient cycling in marine environments exists, our understanding of these complex processes in natural terrestrial environments has lagged behind. Proposals are encouraged that will provide insight into microbial activities controlling global cycles of carbon, nitrogen, phosphorus, and sulfur from a broad range of terrestrial and coastal environments (including terrestrial-aquatic interfaces such as peat bogs, marshes, and hyporheic zones). In addition, developing multi-omics datasets to enable modeling of regulatory and metabolic processing of these elements in model microbes and microbial systems is encouraged

IV. Algal genomics

Algae are important primary producers with tremendous diversity, long evolutionary history, and huge potential for DOE science and applications. Significant and rapid advances in the fundamental knowledge of algal biology, the entire biomass-to-bioenergy supply chain, and algal cultivation strategies are dependent on ecological, genetic and biochemical information which is currently lacking. Proposals are encouraged that will expand genomic knowledge across algal diversity, that will build fundamental knowledge of algal metabolism and physiology, and which will provide insights into algal associations with other microbes.

Project Structure

CSP projects are expected to generate publicly available data that will answer important questions relevant to the target organism or environment as well as providing the substrate for broader use by the DOE research community. CSP projects have historically provided a means for user communities to assemble and interact in collaborative ways. Proposals are encouraged that involve some or all of the following features: 1) a scale and complexity that exceeds the capacity of a single lab, 2) engaging a large group of collaborators, 3) requiring DOE JGI capabilities that reach beyond genome sequencing, 4) generating data of high value to the scientific community, and 5) plans to analyze and distribute data and results through the DOE Systems Biology Knowledgebase (KBase).

All proposals may request up to 2.5 Tbp of sequence data. For multi-PI projects generating data of broad utility to the scientific community, requests of up to 10 Tbp will be considered.  Even larger Tbp totals (up to 40 Tbp)  will be considered for shotgun Illumina DNA sequencing only (i.e. plant resequencing and metagenome sequencing), but such proposals will be evaluated separately with the anticipation that only 1 or 2 would be approved.

Requests for Pacific Biosciences long read sequencing are capped at 25 Gbp, while requests of up to 50-100 Gbp will be considered for multi-PI projects of high value to the scientific community.

The DOE JGI provides extensive data analysis pipelines. Applicants should present a plan for all data analysis that may be required beyond these standard pipelines. Users are encouraged to consider how KBase may be used or extended to meet these needs.

DOE JGI Capabilities

The DOE JGI employs an evolving suite of sequencing platforms, currently comprised of short read Illumina as well as single molecule long-read Pacific Biosciences technology. The capabilities available for this call are listed below. While individual proposals may draw from one or more of these capabilities as needed to fulfill project goals, within the overall cap, the final scope is ultimately at the discretion of the DOE JGI. Successful projects frequently utilize a combination of capabilities:

Core Capabilities Include:

  • De novo sequencing of fungal, algal, bacterial, archaeal, viral and plant genomes
  • Resequencing and target-enriched resequencing for variation detection
  • Microbial community shotgun DNA/RNA sequencing (not amplicon sequencing, which is no longer offered)
  • Whole genome DNA methylation analysis
  • Comprehensive transcriptome analysis including coding transcript annotation, non-coding RNA (both small and long ncRNA) characterization and expression profiling
  • Fluorescence activated cell sorting for targeted metagenomics and single-cell genomics
  • DNA/gene synthesis linked to sequence data generation, including codon optimization, refactoring, and assembly of biosynthetic pathways into appropriate vector systems for expression in heterologous hosts. (Use of this capability is encouraged, but synthesis-only projects should be directed to the call for stand-alone DNA synthesis proposals)
  • Mass spectrometry-based metabolomics analysis of primary and secondary metabolites from plants and microorganisms (Use of this capability is encouraged, but metabolomics-only projects will not be considered at this time)
  • Analysis pipelines for the datasets above

The DOE JGI also has limited capacity for the following developing capabilities, when tightly linked to sequencing or DNA synthesis:

  • Custom analysis of DOE JGI datasets
  • Chromatin analysis including mapping of histone modifications by Chromatin Immunoprecipitation (ChIP-seq), and open chromatin by Assay for Transposase-Accessible Chromatin (ATAC-seq).
  • In vitro transcription factor binding site mapping by DNA affinity purification sequencing (DAP-seq). DNA/gene synthesis should also be requested for construction of affinity-tagged transcription factor clones used in the assay.
  • Flow cytometric sorting and genomic analysis of metabolically active microbes labeled via Bio-Orthogonal Non-Canonical Amino acid Tagging (BONCAT)
  • Access to high-performance computing at the National Energy Research Scientific Computing Center (NERSC)
  • Developing new applications and extending capabilities in KBase

Mechanism and Timing of Review

Letters of intent will only be accepted electronically and should be submitted at https://proposals.jgi.doe.gov/ between February 6 and March 31, 2017. The CSP Call is open to anyone with the understanding that CSP data are made publicly available immediately, without exception. Applicants will be advised by April 14, 2017, whether to prepare a full proposal. Full proposals will be due May 26. Guidance for submitting full proposals will be included in the email notification to invited applicants.

Proposals will be independently peer-reviewed and ranked following given review criteria. Final decisions will be made by DOE JGI senior management with final approval given by DOE program management. All projects will begin as soon as User Agreements are finalized, targeted for October 2017.

For questions about the appropriateness of projects, program specifics or application process, please contact Susannah Tringe.

Proposal Schedule

To respond to the annual CSP call, a Letter of Intent is required before submitting a proposal. Letters of intent for CSP19 will only be accepted electronically and should be submitted at https://proposals.jgi.doe.gov/ between February 6 and March 30, 2018. Applicants will be advised by April 16 whether to prepare a full proposal, and full proposals will be due May 30. Guidance for submitting full proposals will be included in the email notification to invited applicants.

The full FY19 schedule is below:

Calls for proposals issued February 6, 2018
Letters of intent received March 30, 2018
Invitation of proposals April 16, 2018
Proposals received May 30, 2018
Technical and scientific review July 2018
Approval and rejection notices sent September 7, 2018
Prepare user agreements September 2018
Projects start As soon as user agreement is finalized

  • Calls for User Proposals
  • CSP Overview
  • FICUS Overview
  • Closed Calls
    • CSP FY24
    • FICUS JGI-EMSL FY24
    • CSP FY23
    • FICUS JGI-EMSL FY23
    • CSP Small-scale
    • CSP DNA Synthesis
    • CSP FY22
    • CSP FY21
    • CSP FY20
    • CSP FY19
    • CSP FY18
    • CSP FY17
    • CSP FY16
    • CSP FY15
    • FICUS JGI-NERSC-KBase FY19
    • FICUS JGI-EMSL FY22
    • FICUS JGI-EMSL FY21
    • FICUS JGI-EMSL FY20
    • FICUS JGI-EMSL FY19
    • FICUS JGI-EMSL FY18
    • FICUS JGI-NERSC FY17
    • FICUS JGI-EMSL FY17
    • FICUS JGI-EMSL FY16
    • FICUS JGI-EMSL FY15
  • Review Process and Scoring Criteria
  • DOE Mission Relevance
  • Proposals FAQ

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California