Published in:
Science (Aug 21 2015)
Author(s):
DOI:
10.1126/science.aaa8764
Abstract:
Immune systems distinguish “self” from “non-self” to maintain homeostasis and must differentially gate access to allow colonization by potentially beneficial, non-pathogenic microbes. Plant roots grow within extremely diverse soil microbial communities, but assemble a taxonomically limited root-associated microbiome. We grew isogenic Arabidopsis thaliana mutants with altered immune systems in a wild soil and also in recolonization experiments with a synthetic bacterial community. We established that biosynthesis of, and signaling dependent on, the foliar defense phytohormone salicylic acid is required to assemble a normal root microbiome. Salicylic acid modulates colonization of the root by specific bacterial families. Thus, plant immune signaling drives selection from the available microbial communities to sculpt the root microbiome.